Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac IKS potassium channel

Abstract

THE slowly activating delayed-rectifier K+ current, IKS, modulates the repolarization of cardiac action potentials. The molecular structure of the IKS channel is not known, but physiological data indicate that one component of theIKSchannel is minK (refs 1–6), a 130-amino-acid protein with a single putative transmembrane domain7. The size and structure of this protein is such that it is unlikely that minK alone forms functional channels8,9. We have previously used positional cloning techniques to define a new putative K+-channel gene, KVLQT110. Mutations in this gene cause long-QT syndrome, an inherited disorder that increases the risk of sudden death from cardiac arrhythmias. Here we show that KVLQT1 encodes a K+ channel with biophysical properties unlike other known cardiac currents. We considered that KVLQT1 might coassemble with another subunit to form func-tional channels in cardiac myocytes. Coexpression of KVLQT1 with minK induced a current that was almost identical to cardiac IKS. Therefore, KVLQT1 is the subunit that coassembles with minK to form IKS channels and IKS dysfunction is a cause of cardiac arrhythmia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goldstein, S. A. N. & Miller, C. Neuron 7, 403–408 (1991).

    Article  CAS  Google Scholar 

  2. Hausdorff, S. F., Goldstein, S. A. N., Rushin, E. E. & Miller, C. Biochemistry 30, 3341–3346 (1991).

    Article  CAS  Google Scholar 

  3. Takumi, T. et al. J. Biol. Chem. 266, 22192–22198 (1991).

    CAS  PubMed  Google Scholar 

  4. Busch, A. E., Varnum, M. D., North, R. A. & Adelman, J. P. Science 255, 1705–1707 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Wang, K.-W. & Goldstein, S. A. N. Neuron 14, 1303–1309 (1995).

    Article  CAS  Google Scholar 

  6. Wang, K., Tai, K. & Goldstein, S. A. N. Neuron 16, 571–577 (1996).

    Article  CAS  Google Scholar 

  7. Takumi, T., Ohkubo, H. & Nakanishi, S. Science 242, 1042–1045 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Attali, B. et al. Nature 365, 850–852 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Lesage, F. et al. Recept Channels 1, 143–152 (1993).

    CAS  PubMed  Google Scholar 

  10. Wang, Q. et al. Nature Genet. 12, 17–23 (1996).

    Article  Google Scholar 

  11. Heginbotham, L., Lu, Z., Abramson, T. & MacKinnon, R. Biophys. J. 66, 1061–1067 (1994).

    Article  CAS  Google Scholar 

  12. Sanguinetti, M. C., Jiang, C., Curran, M. E. & Keating, M. T. Cell 81, 299–307 (1995).

    Article  CAS  Google Scholar 

  13. Smith, P. L., Baukrowitz, T. & Yellen, G. Nature 379, 833–836 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Spector, P. S., Curran, M. E., Zou, A., Keating, M. T. & Sanguinetti, M. C. J. Gen. Physiol. 107, 611–619 (1996).

    Article  CAS  Google Scholar 

  15. Li, G.-R., Feng, J., Yue, L., Carrier, M. & Nattel, S. Circ. Res. 78, 689–696 (1996).

    Article  CAS  Google Scholar 

  16. Balser, J. R., Bennett, P. B. & Roden, D. M. J. Gen. Physiol. 96, 835–863 (1990).

    Article  CAS  Google Scholar 

  17. Sanguinetti, M. C. & Jurkiewicz, N. K. J. Gen. Physiol. 96, 195–215 (1990).

    Article  CAS  Google Scholar 

  18. Balser, J. R., Bennett, P. B., Hondeghem, L. M. & Roden, D. M. Circ. Res. 69, 519–529 (1991).

    Article  CAS  Google Scholar 

  19. Matsuura, H., Ehara, T. & Imoto, Y. Pflugers Arch. 410, 596–603 (1987).

    Article  CAS  Google Scholar 

  20. Cui, J., Kline, R. P., Pennefather, P. & Cohen, I. S. J. Gen. Physiol. 104, 87–105 (1994).

    Article  CAS  Google Scholar 

  21. Curran, M. E. et al. Cell 80, 795–804 (1995).

    Article  CAS  Google Scholar 

  22. Sanguinetti, M. C., Curran, M. E., Spector, P. S. & Keating, M. T. Proc. Natl Acad. Sci. USA 93, 2208–2212 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanguinetti, M., Curran, M., Zou, A. et al. Coassembly of KVLQT1 and minK (IsK) proteins to form cardiac IKS potassium channel. Nature 384, 80–83 (1996). https://doi.org/10.1038/384080a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384080a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing