Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modular decomposition in visuomotor learning

Abstract

The principle of 'divide-and-conquer', the decomposition of a complex task into simpler subtasks each learned by a separate module, has been proposed as a computational strategy during learning1–3. We explore the possibility that the human motor system uses such a modular decomposition strategy to learn the visuomotor map, the relationship between visual inputs and motor outputs. Using a virtual reality system, subjects were exposed to opposite prism-like visuomotor remappings—discrepancies between actual and visually perceived hand locations— for movements starting from two distinct locations. Despite this conflicting pairing between visual and motor space, subjects learned the two starting-point-dependent visuomotor mappings and the generalization of this learning to intermediate starting locations demonstrated an interpolation of the two learned maps. This interpolation was a weighted average of the two learned visuomotor mappings, with the weighting sigmoidally dependent on starting location, a prediction made by a computational model of modular learning known as the "mixture of experts"1. These results provide evidence that the brain may employ a modular decomposition strategy during learning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jacobs, R. A., Jordan, M. I., Nowlan, S. J. & Hinton, G. E. Adaptive mixture of local experts. Neur. Comp. 3, 79–87 (1991).

    Article  Google Scholar 

  2. Jordan, M. I. & Jacobs, R. A. Hierarchical mixtures of experts and the EM algorithm. Neur. Comp. 6, 181–214 (1994).

    Article  Google Scholar 

  3. Cacciatore, T. W. & Nowlan, S. J. Mixtures of controllers for jump linear and non-linear plants. In Advances in Neural Information Processing Systems 6 (eds Cowan, J. D., Tesauro, G. & Alspector, J.) 719–726 (Morgan Kaufmann, San Francisco, 1994).

    Google Scholar 

  4. Jacobs, R. A., Jordan, M. I. & Barto, A. G. Task decomposition through competition in a modular connectionist architecture: the what and where vision tasks. Cogn. Sci. 15, 219–250 (1991).

    Article  Google Scholar 

  5. Graybiel, A. M., Aosaki, T., Flaherty, A. W. & Kimura, M. The basal ganglia and adaptive motor control. Science 265, 1826–1831 (1994).

    Article  ADS  CAS  Google Scholar 

  6. McGonigle, B. & Flook, J. Long-term retention of single and multistate prismatic adaptation by humans. Nature 272, 364–366 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Welch, R. B., Bridgeman, B., Anand, S. & Browman, K. E. Alternating prism exposure causes dual adaptation and generalization to a novel displacement. Percept. Psychophys. 54, 195–204 (1993).

    Article  CAS  Google Scholar 

  8. Clower, D. M. et al. Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 383, 618–621 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Kohler, I. Development and alterations of the perceptual world: conditioned sensations. Proc. Austrian Acad. Sci. 227, 1–118 (1951).

    ADS  Google Scholar 

  10. Hay, J. C. & Pick, H. L. Gaze-contingent prism adaptation: optical and motor factors. J. Exp. Psychol. 72, 640–648 (1966).

    Article  CAS  Google Scholar 

  11. Shelhamer, M., Robinson, D. A. & Tan, H. S. Context-specific gain switching in the human vestibuloocular reflex. Ann. NY Acad. Sci. 656, 889–891 (1991).

    Article  ADS  Google Scholar 

  12. Baker, J. F., Perlmutter, S. I., Peterson, B. W., Rude, S. A. & Robinson, F. R. Simultaneous opposing adaptive changes in cat vestibulo-ocular reflex directions for two body orientations. Exp. Brain Res. 69, 220–224 (1987).

    Article  CAS  Google Scholar 

  13. Gandolfo, F., Mussa-Ivaldi, F. A. & Bizzi, E. Motor learning by field approximation. Proc. Natl Acad. Sci. USA 93, 3843–3846 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Kravitz, J. H. & Yaffe, F. Conditioned adaptation to prismatic displacement with a tone as the conditional stimulus. Percept. Psychophys. 12, 305–308 (1972).

    Article  Google Scholar 

  15. Kravitz, J. H. Conditioned adaptation to prismatic displacement. Percept. Psychophys. 11, 38–42 (1972).

    Article  Google Scholar 

  16. Welch, R. B. Discriminative conditioning of prism adaptation. Percept. Psychophys. 10, 90–92 (1971).

    Article  Google Scholar 

  17. Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J. & Thach, W. T. Throwing while looking through prisms, II. Specificity and storage of multiple gaze-throw calibrations. Brain 119, 1199–1211 (1996).

    Article  Google Scholar 

  18. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Andersen, R. A., Esseck, C. & Siegel, R. Encoding of spatial location by posterior parietal neurons. Science 230, 456–458 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Soechting, J. F. & Flanders, M. Sensorimotor representations for pointing to targets in three-dimensional space. J. Neurophysiol. 62, 582–594 (1989).

    Article  CAS  Google Scholar 

  21. Kalaska, J. F. & Crammond, D. J. Cerebral cortical mechanisms of reaching movements. Science 255, 1517–1523 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Bridle, J. S. Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In Neuro-computing: Algorithms, Architectures, and Applications (eds Fougelman-Soulie, F. & Herault, J.) 227–236 (Springer, Berlin, 1990).

    Google Scholar 

  23. Bedford, F. Constraints on learning new mappings between perceptual dimensions. J. Exp. Psychol. 15, 232–248 (1989).

    Google Scholar 

  24. Imamizu, H., Uno, Y. & Kawato, M. Internal representations of the motor apparatus: implications from generalization in visuomotor learning. J. Exp. Psychol. 21, 1174–1198 (1995).

    CAS  Google Scholar 

  25. Ghahramani, Z., Wolpert, D. M. & Jordan, M. I. Generalization to local remappings of the visuomotor coordinate transformation. J. Neurosci. 16, 7085–7096 (1996).

    Article  CAS  Google Scholar 

  26. Georgopoulos, A. P., Schwartz, A. B. & Kettner, R. E. Neuronal population coding of movement direction. Science 233, 1416–1419 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Georgopoulos, A. P. Current issues in directional motor control. Trends Neurosci. 18, 506–510 (1995).

    Article  CAS  Google Scholar 

  28. Bizzi, E., Mussa-Ivaldi, F. A. & Giszter, S. Computations underlying the execution of movement: A biological perspective. Science 253, 287–291 (1991).

    Article  ADS  CAS  Google Scholar 

  29. Wolpert, D. S., Ghahramani, Z. & Jordan, M. I. Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study. Exp. Brain Res. 103, 460–470 (1995).

    Article  CAS  Google Scholar 

  30. Efron, B. The Jacknife, the Bootstrap and Other Resampling Plans (Society for Industrial and Applied Mathematics, Philadelphia, 1982).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghahramani, Z., Wolpert, D. Modular decomposition in visuomotor learning. Nature 386, 392–395 (1997). https://doi.org/10.1038/386392a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386392a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing