Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The exocytotic event in chromaffin cells revealed by patch amperometry

Abstract

In mast cells and granulocytes, exocytosis starts with the formation of a fusion pore1,2,3. It has been suggested that neurotransmitters may be released through such a narrow pore without full fusion4,5. However, owing to the small size of the secretory vesicles containing neurotransmitter, the properties of the fusion pore formed during Ca2+-dependent exocytosis and its role in transmitter release are still unknown. Here we investigate exocytosis of individual chromaffin granules by using cell-attached capacitance measurements3,6 combined with electrochemical detection of catecholamines7,8, achieved by inserting a carbon-fibre electrode into the patch pipette. This allows the simultaneous determination of the opening of individual fusion pores and of the kinetics of catecholamine release from the same vesicle. We found that the fusion-pore diameter stays at <3 nm for a variable period, which can last for several seconds, before it expands. Transmitter is released much faster through this pore than in mast cells, generating a ‘foot’ signal8 which precedes the amperometric spike. Occasionally, the narrow pore forms only transiently and does not expand, allowing complete transmitter release without full fusion of the vesicle with the plasma membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Arrangement of a CFE inside a patch pipette.
Figure 2: First exocytotic event shown in Fig. 1d on an expanded scale, showing amperometric current (a), imaginary part of the admittance (b, upper trace), and real part of admittance (b, lower trace) after baseline subtraction.
Figure 3: Event 6 shown in Fig. 1d on an expanded timescale, showing amperometric trace (a), imaginary part of admittance (b, upper trace), and real part of admittance (b, lower trace).

Similar content being viewed by others

References

  1. Breckenridge, L. J. & Almers, W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 328, 814–817 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Spruce, A. E., Breckneridge, L. J., Lee, A. K. & Almers, W. Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicles. Neuron 4, 643–654 (1990).

    Article  CAS  Google Scholar 

  3. Lollike, K., Borregaard, N. & Lindau, M. The exocytotic fusion pore of small granules has a conductance similar to an ion channel. J. Cell Biol. 129, 99–104 (1995).

    Article  CAS  Google Scholar 

  4. Almers, W. & Tse, F. W. Transmitter release from synapses: Does a preassembled fusion pore initiate exocytosis? Neuron 4, 813–818 (1990).

    Article  CAS  Google Scholar 

  5. Neher, E. Secretion without full fusion. Nature 363, 497–498 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Neher, E. & Marty, A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc. Natl Acad. Sci. USA 79, 6712–6716 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Wightman, R. M. et al. Temporally resolved catecholamine spikes correspond to single vesicle release for individual chromaffin cells. Proc. Natl Acad. Sci. USA 88, 10754–10758 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Chow, R. H., Rüden, L. v. & Neher, E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356, 60–63 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Gillis, K. D., Mößner, R. & Neher, E. Protein kinase C enhances exocytosis from chromaffin cells by increasing the size of the readily releasable pool of secretory granules. Neuron 16, 1209–1220 (1996).

    Article  CAS  Google Scholar 

  10. Chen, B.-M. & Grinell, A. D. Integrins and modulation of transmitter release from motor nerve terminals by stretch. Science 269, 1578–1580 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Chen, B.-M. & Grinell, A. D. Kinetics, Ca2+dependence, and biophysical properties of integrin-mediated mechanical modulation of transmitter release from frog motor nerve terminals. J. Neurosci. 17, 904–916 (1997).

    Article  CAS  Google Scholar 

  12. Moser, T., Chow, R. H. & Neher, E. Swelling-induced catecholamine secretion recorded from single chomaffin cells. Pflügers Arch. Eur. J. Physiol. 431, 196–203 (1995).

    Article  CAS  Google Scholar 

  13. Chow, R. H., Klingauf, J., Heinemann, C., Zucker, R. S. & Neher, E. Mechanisms determining the time course of secretion in neuroendocrine cells. Neuron 16, 369–376 (1996).

    Article  CAS  Google Scholar 

  14. Breckenridge, L. J. & Almers, W. Final steps in exocytosis observed in a cell with giant secretory granules. Proc. Natl Acad. Sci. USA 84, 1945–1949 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Zimmerberg, J., Curran, M., Cohen, F. S. & Brodwick, M. Simultaneous electrical and optical measurements show that membrane fusion precedes secretory granule swelling during exocytosis of beige mouse mast cells. Proc. Natl Acad. Sci. USA 84, 1585–1589 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Walker, A., Glavinovic, M. I. & Trifaró, J.-M. Temperature dependence of release of vesicular content in bovine chromaffin cells. Pflügers Arch. Eur. J. Physiol. 432, 885–892 (1996).

    Article  CAS  Google Scholar 

  17. Jankowski, J. A., Schroeder, T. J., Cioklowski, E. L. & Wightman, R. M. Temporal characteristics of quantal secretion of catecholamines from adrenal medullary cels. J. Biol. Chem. 268, 14694–14700 (1993).

    CAS  PubMed  Google Scholar 

  18. Zhou, Z., Misler, S. & Chow, R. H. Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys. J. 70, 1543–1552 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Baur, J. E., Kristensen, E. W., May, L. J., Wiedemann, D. J. & Wightman, R. J. Fast-scan voltammetry of biogenic amines. Annal. Chem. 60, 1268–1272 (1988).

    Article  CAS  Google Scholar 

  20. Walker, A., Glavinovic, M. I. & Trifaró, J.-M. Time course of release of content of single vesicles in bovine chromaffin cells. Pflügers Arch. Eur. J. Physiol. 431, 729–735 (1996).

    Article  CAS  Google Scholar 

  21. Wightman, R. M., Schroeder, T. J., Finnegan, J. M., Ciolkowski, E. L. & Pihel, K. Time course of release of catecholamines from individual vesicles during exocytosis at adrenal medullary cells. Biophys. J. 68, 383–390 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Chow, R. H. & Rüden, L. v. in Single Channel Recording (eds Sakmann, B. & Neher, E.) 245–275 (Plenum, New York, (1995)).

    Book  Google Scholar 

  23. Alvarez de Toledo, G., Fernández-Chacón, R. & Fernandez, J. M. Release of secretory products during transient vesicle fusion. Nature 363, 554–558 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Rahamimoff, R. & Fernandez, J. M. Pre- and postfusion regulation of transmitter release. Neuron 18, 17–27 (1997).

    Article  CAS  Google Scholar 

  25. Bruns, D. & Jahn, R. Real-time measurement of transmitter release for single synaptic vesicles. Nature 377, 62–65 (1997).

    Article  ADS  Google Scholar 

  26. Gasnier, B., Scherman, D. & Henry, J.-P. Inactivation of the catecholamine transporter during the preparation of chromaffin granule ‘ghosts’. FEBS Lett. 222, 215–219 (1987).

    Article  CAS  Google Scholar 

  27. Scherman, D. & Boschi, G. Time required for transmitter accumulation inside monoaminergic storage vesicles differs in peripheral and central systems. Neuroscience 27, 1029–1035 (1988).

    Article  CAS  Google Scholar 

  28. Phillips, J. H. Dynamic aspects of chromaffin granule structure. Neuroscience 7, 1595–1609 (1982).

    Article  CAS  Google Scholar 

  29. Parsons, T. D., Coorssen, J. R., Horstmann, H. & Almers, W. Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neurons 15, 1085–1096 (1995).

    Article  CAS  Google Scholar 

  30. Bach, G. in Quantitative Methoden der Morphologie (eds Weibel, E. R. & Elias, H.) 23–45 (Springer, Berlin, (1967).

    Book  Google Scholar 

Download references

Acknowledgements

We thank J. Pauli and the staff of the mechanical workshop for their contributions to the development and production of the adjustable pipette holder; J. Tritthard for the development of the amperometric amplifier; I. Wunderlich and R. Hinz-Herkommer for technical assistance; and E. Neher for his comments and encouragement. This work was supported by grants from the Deutsche Forschungsgemeinschaft to M.L. and from the Spanish Ministerio de Educación y Cultura (DGICYT) to G.A.T. A.A. was supported by an FPI fellowship from DGICYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lindau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albillos, A., Dernick, G., Horstmann, H. et al. The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389, 509–512 (1997). https://doi.org/10.1038/39081

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/39081

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing