Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Silencing of TGF-β signalling by the pseudoreceptor BAMBI

Abstract

Members of the transforming growth factor-β (TGF-β) superfamily, including TGF-β, bone morphogenetic proteins (BMPs), activins and nodals, are vital for regulating growth and differentiation1. These growth factors transduce their signals through pairs of transmembrane type I and type II receptor kinases2,3,4. Here, we have cloned a transmembrane protein, BAMBI, which is related to TGF-β-family type I receptors but lacks an intracellular kinase domain. We show that BAMBI is co-expressed with the ventralizing morphogen BMP4 (refs 5, 6) during Xenopus embryogenesis and that it requires BMP signalling for its expression. The protein stably associates with TGF-β-family receptors and inhibits BMP and activin as well as TGF-β signalling. Finally, we provide evidence that BAMBI's inhibitory effects are mediated by its intracellular domain, which resembles the homodimerization interface of a type I receptor and prevents the formation of receptor complexes. The results indicate that BAMBI negatively regulates TGF-β-family signalling by a regulatory mechanism involving the interaction of signalling receptors with a pseudoreceptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BAMBI is related to BMPR-I and is regulated by BMP4.
Figure 2: BAMBI inhibits BMP and activin signalling in Xenopus embryos.
Figure 3: BAMBI inhibits ligand-independent signalling by TGF-β family receptors.
Figure 4: BAMBI interacts with TGF-β receptors.
Figure 5: BAMBI inhibits formation of functional receptor complex.
Figure 6: The intracellular domain of BAMBI mediates inhibition of TGF-β family signalling in Xenopus.

Similar content being viewed by others

References

  1. Hoodless,P. A. & Wrana,J. L. Mechanism and function of signaling by the TGFβ superfamily. Curr. Top. Microbiol. Immunol. 228, 235–272 (1998).

    CAS  PubMed  Google Scholar 

  2. Derynck,R. & Feng,X. H. TGF-β receptor signaling. Biochim. Biophys. Acta 1333, F105–F150 (1997).

    CAS  PubMed  Google Scholar 

  3. Heldin,C. H., Miyazono,K. & ten Dijke,P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Massagué,J. TGF β signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).

    Article  PubMed  Google Scholar 

  5. Harland,R. M. & Gerhart,J. Formation and function of Spemann's organizer. Annu. Rev. Dev. Biol. 13, 611–667 (1997).

    Article  CAS  Google Scholar 

  6. Sasai,Y. & De Robertis,E. M. Ectodermal patterning in vertebrate embryos. Dev. Biol. 182, 5–20 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Gawantka,V. et al. Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech. Dev. 77, 95–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Degen,W. G. et al. Expression of nma, a novel gene, inversely correlates with the metastatic potential of human melonoma cell lines and xenografts. Int. J. Cancer 65, 460–465 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Graff,J. M., Thies,R. S., Song,J. J., Celeste,A. J. & Melton,D. A. Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals in vivo. Cell 79, 169–179 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki,A. et al. A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc. Natl Acad. Sci. USA 91, 10255–10259 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dale,L., Howes,G., Price,B. M. & Smith,J. C. Bone morphogenetic protein 4: a ventralizing factor in early Xenopus development. Development 115, 573–585 (1992).

    CAS  PubMed  Google Scholar 

  12. Jones,C. M., Lyons,K. M., Lapan,P. M., Wright,C. V. & Hogan,B. L. DVR-4 (bone morphogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. Development 115, 639–647 (1992).

    CAS  PubMed  Google Scholar 

  13. Candia,A. F. et al. Cellular interpretation of multiple TGF-β signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 124, 4467–4480 (1997).

    CAS  PubMed  Google Scholar 

  14. Chen,Y. G. et al. Determinants of specificity in TGF-β signal transduction. Genes Dev. 12, 2144–2152 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen,X., Rubock,M. J. & Whitman,M. A transcriptional partner for MAD proteins in TGF-β signalling. Nature 383, 691–696 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Chen,Y. G. & Massagué,J. Smad1 recognition and activation by the ALK1 group of TGFβ family receptors. J. Biol. Chem. 274, 3672–3677 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Massague,J. Identification of receptors for Type beta transforming growth factor. Methods Enzymol. 146, 174–195 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Wrana,J. L., Attisano,L., Wieser,R., Ventura,F. & Massague,J. Mechanism of activation of the TGF-β receptor. Nature 370, 341–347 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Luo,K. & Lodish,H. F. Signaling by chimeric erythropoietin-TGF-β receptors: homodimerization of the cytoplasmic domain of the type I TGF-β receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. EMBO J. 15, 4485–4496 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stockwell,B. R. & Schreiber,S. L. Probing the role of homomeric and heteromeric receptor interactions in TGF-β signaling using small molecule dimerizers. Curr. Biol. 8, 761–770 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Gawantka,V., Delius,H., Hirschfeld,K., Blumenstock,C. & Niehrs,C. Antagonizing the Spemann organizer: role of the homeobox gene Xvent-1. EMBO J. 14, 6268–6279 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen,Y. G., Liu,F. & Massagué,J. Mechanism of TGFβ receptor inhibition by FKBP12. EMBO J. 16, 3866–3876 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rupp,R. A., Snider,L. & Weintraub,H. Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 8, 1311–1323 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Glinka,A., Delius,H., Blumenstock,C. & Niehrs,C. Combinatorial signalling by Xwnt-11 and Xnr3 in the organizer epithelium. Mech. Dev. 60, 221–231 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Huang,H. C., Murtaugh,L. C., Vize,P. D. & Whitman,M. Identification of a potential regulator of early transcriptional responses to mesoderm inducers in the frog embryo. EMBO J. 14, 5965–5973 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Candia,A. F. et al. Mox-1 and Mox-2 define a novel homeobox gene subfamily and are differentially expressed during early mesodermal patterning in mouse embryos. Development 116, 1123–1136 (1992).

    CAS  PubMed  Google Scholar 

  27. Howell,M. & Hill,C. S. XSmad2 directly activates the activin-inducible, dorsal mesoderm gene XFKH1 in Xenopus embryos. EMBO J. 16, 7411–7421 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaufmann,E. et al. Antagonistic actions of activin A and BMP2/4 control dorsal lip-specific activation of the early response gene XFD-1′ in Xenopus laevis embryos. EMBO J. 15, 6379–6749 (1996).

    Article  Google Scholar 

  29. Weis-Garcia,F. & Massagué,J. Complementation between kinase-defective and activation-defective TGF-β receptors reveals a novel form of receptor cooperativity essential for signaling. EMBO J. 15, 276–289 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huse,M., Chen, Y.-G., Massagué,J. & Kuriya,J. Crystal structure of the cytoplasmic domain of the type I TGFb receptor in complex with FKBP12. Cell 96, 425–436 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank U. Hebling and L. Swaby for assistance with sequencing work. Reagents were provided by M. Asashima, K. Cho, W. Knöchel, C.-H. Heldin, D. Melton, M. Ueno, M. Whitman and the Genetics Institute. This work was supported in part by a grant from the Deutsche Forschungsgemeinschaft to C.N. and an NIH grant to J.M., who is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joan Massague´ or Christof Niehrs.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onichtchouk, D., Chen, YG., Dosch, R. et al. Silencing of TGF-β signalling by the pseudoreceptor BAMBI. Nature 401, 480–485 (1999). https://doi.org/10.1038/46794

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/46794

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing