Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription

Abstract

CpG methylation in vertebrates correlates with alterations in chromatin structure and gene silencing1,2,3,4. Differences in DNA-methylation status are associated with imprinting phenomena and carcinogenesis5,6,7,8,9,10. In Xenopus laevis oocytes, DNA methylation dominantly silences transcription through the assembly of a repressive nucleosomal array5. Methylated DNA assembled into chromatin binds the transcriptional repressor MeCP2 which cofractionates with Sin3 and histone deacetylase. Silencing conferred by MeCP2 and methylated DNA can be relieved by inhibition of histone deacetylase, facilitating the remodelling of chromatin and transcriptional activation. These results establish a direct causal relationship between DNA methylation-dependent transcriptional silencing and the modification of chromatin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cofractionation of a histone deacetylase with MeCP2 and Sin3.
Figure 2: MeCP2, Sin3 and histone-deacetylase activity coimmunopricipitate.
Figure 3: Properties of Xenopus MeCP2. a, Sequence comparison of Xenopus MeCP2 (xMeCP2), rat MeCP2 (rMeCP2) and human MeCP2 (hMeCP2) proteins.
Figure 4: The MRD effectively represses transcription in frog oocytes in a TSA-sensitive manner.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Antequera, F. Boyes, J. Bird, A. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62, 503–514 (1990).

    CAS  Google Scholar 

  2. Keshet, I. Lieman-Hurwitz, J. Cedar, H. DNA methylation affects the formation of active chromatin. Cell 44, 535–543 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  3. Yoder, J.A. Walsh, C.P. Bestor, T.H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Bird, A. Gene number, noise reduction and biological complexity. Trends Genet. 11, 94–100 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Li, E. Beard, C. Jaenisch, R. Role of DNA methylation in genomic imprinting. Nature 366 , 362–365 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Zingg, J.M. Jones, P.A. Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis 18, 869–882 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Jones, P.A. Gonzalgo, M.L. Altered DNA methylation and genome instability: a new pathway to cancer? Proc. Natl. Acad. Sci. USA 94, 2103–2105 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Gonzalez-Zulueta, M. et al. Methylation of the 5' CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 55, 4531–4535 (1995).

    CAS  Google Scholar 

  9. Baylin, S.B. Herman, J.G. Graff, J.R. Vertino, P.M. Issa, J.P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Merlo, A. et al. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nature Med. 1, 686–692 (1995).

    CAS  Google Scholar 

  11. Buschhausen, G. Wittig, B. Graessmann, M. Graessman, A. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc. Natl. Acad. Sci. USA 84, 1177–1181 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Kass, S.U. Landsberger, N. Wolffe, A.P. DNA methylation directs a time-dependent repression of transcription initiation . Curr. Biol. 7, 157–165 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Nan, X. Campoy, J. Bird, A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin . Cell 88, 1–11 (1997).

    Article  Google Scholar 

  14. Nan, X. Tate, P. Li, E. Bird, A.P. DNA methylation specifies chromosomal localization of MeCP2. Mol. Cell. Biol. 16, 414–421 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ayer, D.E. Lawrence, Q.A. Eisenman, R.N. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80, 767–776 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Alland, L. et al. Role of NCoR and histone deacetylase in Sin3-mediated transcriptional and oncogenic repression. Nature 387, 49–55 (1997).

    CAS  Google Scholar 

  17. Heinzel, T. et al. N-CoR, mSIN3, and histone deacetylase in a complex required for repression by nuclear receptors and Mad. Nature 387, 43–48 (1997).

    CAS  Google Scholar 

  18. Laherty, C.D. et al. Histone deacetylase associated with the mSin3 corepressor mediate Mad transcriptional repression. Cell 89, 349–356 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Kadosh, D. Struhl, K. Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89, 365–571 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Wong, J. Patterton, D. Imhof, A. Shi, Y.-B. Wolffe, A.P. Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase. EMBO J. 17, 520–534 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nan, X. Meehan, R.R. Bird, A.P. Dissection of the methyl-CpG binding domain from the chromosal protein MeCP2. Nucleic Acids Res. 21, 4886–4892 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Landsberger, N. Wolffe, A.P. The role of chromatin and Xenopus heat shock transcription factor (XHSF1) in the regulation of the Xenopus hsp70 promoter in vivo. Mol. Cell. Biol. 15, 6013–6024 (1995).

    CAS  Google Scholar 

  23. Landsberger, N. Wolffe, A.P. Remodeling of regulatory nucleoprotein complexes on the Xenopus hsp70 promoter during meiotic maturation of the Xenopus oocyte. EMBO J. 16, 4361–4373 (1997).

    CAS  Google Scholar 

  24. Hsieh, C. -L.Dependence of transcriptional repression on CpG methylation density. Mol. Cell. Biol. 14, 5487–5494 ( 1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kass, S.U. Goddard, J.P. Adams, R.L.P. Inactive chromatin spreads from a focus of methylation. Mol. Cell. Biol. 13, 7372–7379 ( 1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leonhardt, H. Page, A.W. Weier, H.-U. Bestor, T.H. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei . Cell 71, 865–873 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Gruenbaum, Y. Szyf, M. Cedar, H. Razin, A. Methylation of replicating and post replicated mouse L-cell DNA. Proc. Natl. Acad. Sci. USA 80, 4919–4921 ( 1983).

    Article  CAS  PubMed  Google Scholar 

  28. De Pinho, R. The cancer-chromatin connection. Nature 391, 533–536 (1998).

    Article  CAS  Google Scholar 

  29. Godde, J.S. Kass, S.U. Hirst, M.C. Wolffe, A.P. Nucleosome assembly on methylated CGG triplet repeats in the Fragile X Mental Retardation gene 1 promoter. J. Biol. Chem. 271, 24325–24328 (1990).

    Article  Google Scholar 

  30. Davey, C. Pennings, S. Allan, J. DNA methylation remodels chromatin structure in vitro. J. Mol. Biol. 267, 276–298 ( 1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P.L.J. was funded by a Pharmacology Research Associate Program fellowship (NIH, NIGMS). G.C.V. was funded by the Netherlands Org. Sci. Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan P. Wolffe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, P., Veenstra, G., Wade, P. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription . Nat Genet 19, 187–191 (1998). https://doi.org/10.1038/561

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/561

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing