Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Taming of transposable elements by homology-dependent gene silencing

Abstract

Transposable elements can invade virgin genomes within a few generations, after which the elements are 'tamed' and retain only limited transpositional activity. Introduction of the I element, a transposon similar to mammalian LINE elements, into Drosophila melanogaster genomes devoid of such elements initially results in high-frequency transposition of the incoming transposon, high mutation rate, chromosomal nondisjunction and female sterility, a syndrome referred to as hybrid dysgenesis1 (for review, see refs 2, 3, 4); a related syndrome has also been described in mammals5. High-frequency transposition is transient, as the number of I elements reaches a finite value and transposition ceases after approximately ten generations6,7. It has been proposed that the I elements encode a factor that negatively regulates their own transcription, but evidence for such a mechanism is lacking8. Using the hybrid dysgenesis syndrome in Drosophila 1,2,3,4 as a model, we show here that transpositional activity of the I element can be repressed by prior introduction of transgenes expressing a small internal region of the I element. This autoregulation presents features characteristic of homology-dependent gene silencing, a process known as cosuppression9,10,11,12,13,14,15. Repression does not require any translatable sequence, its severity correlates with transgene copy number and it develops in a generation-dependent manner via germline transmission of a silencing effector in females only. These results demonstrate that transposable elements are prone to and can be tamed by homology-dependent gene silencing, a process that may have emerged during the course of evolution as a specific defense mechanism against these elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Constructs and rationale of the assay for measurement of the level of I-element activity in transgenic strains.
Figure 2: Regulation of I-element activity by transgenic strains is transgene copy-number dependent.
Figure 3: Kinetics of the repression process in different hsp[i2Δ]pA and hsp[i2Δ*]pA transgenic strains.
Figure 4: The repressed phenotype is maternally transmitted.
Figure 5: Regulation of I-element activity is not dependent on specific I sequences within the transgenes, but requires their transcription.

Similar content being viewed by others

References

  1. Picard, G. & L'Héritier, P. A maternally inherited factor inducing sterility in D. melanogaster. Drosophila Information Service. 46, 54 54 (1971).

    Google Scholar 

  2. Bregliano, J.C. et al. Hybrid dysgenesis in Drosophila melanogaster. Science 207, 606–611 ( 1980).

    Article  CAS  Google Scholar 

  3. Finnegan, D.J. The I factor and I–R hybrid dysgenesis in Drosophila melanogaster . in Mobile DNA (eds Berg, D.E. & Howe, M.M.) 503 –517 (American Society for Microbiology, Washington D.C., 1989).

    Google Scholar 

  4. Bucheton, A. I transposable elements and I–R hybrid dysgenesis in Drosophila. Trends Genet. 6, 16–21 (1990).

    Article  CAS  Google Scholar 

  5. Waugh O'Neill, R.J., O'Neill, M.J. & Marshall Graves, J.A. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393, 68–72 ( 1998).

    Article  CAS  Google Scholar 

  6. Pélisson, A. & Bregliano, J.C. Evidence for rapid limitation of the I element copy number in a genome submitted to several generations of I–R hybrid dysgenesis in Drosophila melanogaster. Mol. Gen. Genet. 207, 306– 313 (1987).

    Article  Google Scholar 

  7. Pritchard, M.A., Dura, J.M., Pélisson, A. & Finnegan, D.J. A cloned I–factor is fully functional in Drosophila melanogaster . Mol. Gen. Genet. 214, 533– 540 (1988).

    Article  CAS  Google Scholar 

  8. Dawson, A., Hartswood, E., Paterson, T. & Finnegan, D.J. A LINE–like transposable element in Drosophila, the I factor, encodes a protein with properties similar to those of retroviral nucleocapsids. EMBO J. 16, 4448–4455 (1997).

    Article  CAS  Google Scholar 

  9. Matzke, M.A. & Matzke, A.J.M. How and why do plants inactivate homologous (trans)genes? Plant Physiol. 107, 679–685 (1995).

    Article  CAS  Google Scholar 

  10. Jorgensen, R.A. Cosuppression, flower color patterns, and metastable gene expression states. Science 268, 686–691 (1995).

    Article  CAS  Google Scholar 

  11. Vaucheret, H., Palauqui, J.–C., Elmayan, T. & Moffatt, B. Molecular and genetic analysis of nitrite reductase co–suppression in transgenic tobacco plants. Mol. Gen. Genet. 248, 311–317 (1995).

    Article  CAS  Google Scholar 

  12. Baulcombe, D.C. RNA as a target and an initiator of post–transcriptional gene silencing in transgenic plants. Plant Mol. Biol. 32, 79–88 (1996).

    Article  CAS  Google Scholar 

  13. Meyer, P. & Saedler, H. Homology–dependant gene silencing in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 23–48 (1996).

    Article  CAS  Google Scholar 

  14. Depicker, A. & Van Montagu, M. Post–transcriptional gene silencing in plants. Curr. Opin. Cell Biol. 9, 373–382 (1997).

    Article  Google Scholar 

  15. Metzlaff, M., O'Dell, M., Cluster, P.D. & Flavell, R.B. RNA–mediated RNA degradation and chalcone synthase A silencing in Petunia. Cell 88, 845–854 (1997).

    Article  CAS  Google Scholar 

  16. Dorer, D.R. & Henikoff, S. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77, 993–1002 ( 1994).

    Article  CAS  Google Scholar 

  17. Goodwin, J. et al. Genetic and biochemical dissection of transgenic RNA–mediated virus resistance. Plant Cell 8, 95– 105 (1996).

    Article  CAS  Google Scholar 

  18. Bingham, P.M. Cosuppression comes to the animals. Cell 90, 385–387 (1997).

    Article  CAS  Google Scholar 

  19. Rossignol, J.–L. & Faugeron, G. Gene inactivation triggered by recognition between DNA repeats. Experientia 50, 307–317 (1994).

    Article  CAS  Google Scholar 

  20. Pal–Bhadra, M., Bhadra, U. & Birchler, J.A. Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by white–Adh transgenes is Polycomb dependent. Cell 90, 479– 490 (1997).

    Article  Google Scholar 

  21. Jensen, S., Cavarec, L., Gassama, M.P. & Heidmann, T. Defective I elements introduced into Drosophila as transgenes can regulate reactivity and prevent I–R hybrid dysgenesis. Mol. Gen. Genet. 248, 381–390 ( 1995).

    Article  CAS  Google Scholar 

  22. English, J.J., Mueller, E. & Baulcombe, D.C. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8 , 179–188 (1996).

    Article  CAS  Google Scholar 

  23. Ratcliff, F., Harrison, B.D. & Baulcombe, D.C. A similarity between viral defense and gene silencing in plants. Science 276, 1558– 1560 (1997).

    Article  CAS  Google Scholar 

  24. Assaad, F.F., Tucker, K.L. & Signer, E.R. Epigenetic repeat–induced gene silencing (RIGS) in Arabidopsis. Plant Mol. Biol. 22, 1067–1085 (1993).

    Article  CAS  Google Scholar 

  25. Garrick, D., Fiering, S., Martin, D.I.K. & Whitelaw, E. Repeat–induced gene silencing in mammals. Nature Genet. 18, 56–59 (1998).

    Article  CAS  Google Scholar 

  26. Chaboissier, M.–C., Bucheton, A. & Finnegan, D.J. Copy number control of a transposable element, the I factor, a LINE–like element in Drosophila. Proc. Natl Acad. Sci. USA 95, 11781– 11785 (1998).

    Article  CAS  Google Scholar 

  27. Montgomery, M.K. & Fire, A. Double–stranded RNA as a mediator in sequence–specific genetic silencing and co–suppression. Trends Genet. 14, 255– 258 (1998).

    Article  CAS  Google Scholar 

  28. Wassenegger, M., Heimes, S., Riedel, L. & Sänger, H.L. RNA–directed de novo methylation of genomic sequences in plants. Cell 76, 567–576 (1994).

    Article  CAS  Google Scholar 

  29. Fawcett, D.H., Lister, C.K., Kellet, E. & Finnegan, D.J. Transposable elements controlling I–R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell 47, 1007–1015 (1986).

    Article  CAS  Google Scholar 

  30. Jensen, S., Cavarec, L., Dhellin, O. & Heidmann, T. Retrotransposition of a marked Drosophila LINE–like I element in cells in culture. Nucleic Acids Res. 22, 1484– 1488 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We especially thank M. Bartozzi for invaluable technical assistance and M. Ashburner, C. Lavialle and L. Cavarec for critical reading of the manuscript and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Heidmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, S., Gassama, MP. & Heidmann, T. Taming of transposable elements by homology-dependent gene silencing . Nat Genet 21, 209–212 (1999). https://doi.org/10.1038/5997

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/5997

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing