Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuronal growth cone collapse triggers lateral extensions along trailing axons

An Erratum to this article was published on 01 May 1999

Abstract

Axonal outgrowth is generally thought to be controlled by direct interaction of the lead growth cone with guidance cues, and, in trailing axons, by fasciculation with pioneer fibers. Responses of axons and growth cones were examined as cultured retinal ganglion cell (RGC) axons encountered repellent cues. Either contact with cells expressing ephrins or mechanical probing increased the probability of lead growth cone retraction. Lateral extension of filopodia and lamellipodia hundreds of microns behind the lead growth cone was correlated with its collapse. Transmission electron microscopy showed that some of the lateral extensions originate from the pioneer axon, whereas others represent growth cones of defasciculating trailing axons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RGC fibers extend filopodia and lamellipodia after their lead growth cone collapses.
Figure 2: The presence, position and duration of lateral extensions.
Figure 3: Phase-contrast, time-lapse images were recorded as a mouse temporal RGC growth cone contacted and retracted from a caudal superior colliculus cell.
Figure 4: A trailing axon began to spread out from a chick RGC fascicle after the two lead pioneer growth cones were physically induced to collapse and retract.

Similar content being viewed by others

References

  1. Sperry, R. W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl. Acad. Sci. USA 50, 703–710 (1963).

    Article  CAS  Google Scholar 

  2. Drescher, U., Bonhoeffer, F. & Muller, B. K. The Eph family in retinal axon guidance. Curr. Opin. Neurobiol. 7, 75–80 (1997).

    Article  CAS  Google Scholar 

  3. Nakamoto, M. et al. Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell 86, 755–766 (1996).

    Article  CAS  Google Scholar 

  4. Roskies, A., Friedman, G. C. & O'Leary, D. D. Mechanisms and molecules controlling the development of retinal maps. Perspect. Dev. Neurobiol. 3, 63–75 (1995).

    CAS  PubMed  Google Scholar 

  5. Sanes, J. R. Topographic maps and molecular gradients. Curr. Opin. Neurobiol. 3, 67–74 (1993).

    Article  CAS  Google Scholar 

  6. Drescher, U. et al. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370 (1995).

    Article  CAS  Google Scholar 

  7. Monschau, B. et al. Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons. EMBO J. 16, 1258–1267 (1997).

    Article  CAS  Google Scholar 

  8. Cheng, H. J., Nakamoto, M., Bergemann, A. D. & Flanagan, J. G. Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82, 371–381 (1995).

    Article  CAS  Google Scholar 

  9. Bonhoeffer, F. & Gierer, A. How do retinal axons find their targets on the tectum? Trends Neurosci. 7, 378–381 (1984).

    Article  Google Scholar 

  10. Nakamura, H. & O'Leary, D. D. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order. J. Neurosci. 9, 3776–3795 (1989).

    Article  CAS  Google Scholar 

  11. Simon, D. K. & O'Leary, D. D. Limited topographic specificity in the targeting and branching of mammalian retinal axons. Dev. Biol. 137, 125–134 (1990).

    Article  CAS  Google Scholar 

  12. Simon, D. K., Roskies, A. L. & O'Leary, D. D. Plasticity in the development of topographic order in the mammalian retinocollicular projection. Dev. Biol. 162, 384–393 (1994).

    Article  CAS  Google Scholar 

  13. Gallo, G. & Letourneau, P. C. Localized sources of neurotrophins initiate axon collateral sprouting. J. Neurosci. 18, 5403–5414 (1998).

    Article  CAS  Google Scholar 

  14. Williams, C. V., Davenport, R. W., Dou, P. & Kater, S. B. Developmental regulation of plasticity along neurite shafts. J. Neurobiol. 27, 127–140 (1995).

    Article  CAS  Google Scholar 

  15. McCaig, C. D. Nerve branching is induced and oriented by a small applied electric field. J. Cell Sci. 95, 605–615 (1990).

    PubMed  Google Scholar 

  16. Bastmeyer, M. & O'Leary, D. D. Dynamics of target recognition by interstitial axon branching along developing cortical axons. J. Neurosci. 16, 1450–1459 (1996).

    Article  CAS  Google Scholar 

  17. O'Leary, D. D. & Terashima, T. Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and "waiting periods". Neuron 1, 901–910 (1988).

    Article  CAS  Google Scholar 

  18. O'Leary, D. D. & Stanfield, B. B. Occipital cortical neurons with transient pyramidal tract axons extend and maintain collaterals to subcortical but not intracortical targets. Brain Res. 336, 326–333 (1985).

    Article  CAS  Google Scholar 

  19. Szebenyi, G., Callaway, J. L., Dent, E. W. & Kalil, K. Interstitial branches develop from active regions of the axon demarcated by the primary growth cone during pausing behaviors. J. Neurosci. 18, 7930–7940 (1998).

    Article  CAS  Google Scholar 

  20. Davenport, R. W., Thies, E., Zhou, R. & Nelson, P. G. Cellular localization of ephrin-A2, -A5 and other functional guidance cues underlie retinotopic development across species. J. Neurosci. 18, 975–986 (1998).

    Article  CAS  Google Scholar 

  21. Davenport, R. W., Thies, E. & Nelson, P. G. Cellular localization of guidance cues in the establishment of retinotectal topography. J. Neurosci. 16, 2074–2085 (1996).

    Article  CAS  Google Scholar 

  22. Davenport, R. W., Dou, P., Rehder, V. & Kater, S. B. A sensory role for neuronal growth cone filopodia. Nature 361, 721–724 (1993).

    Article  CAS  Google Scholar 

  23. Burmeister, D. W., Rivas, R. J. & Goldberg, D. J. Substrate-bound factors stimulate engorgement of growth cone lamellipodia during neurite elongation. Cell. Motil. Cytoskeleton 19, 255–268 (1991).

    Article  CAS  Google Scholar 

  24. Goldberg, D. J., Burmeister, D. W. & Rivas, R. J. in The Nerve Growth Cone (eds. Letourneau, P. C., Kater, S. B. & Macagno, E. R.) 79–96 (Raven, New York, 1991).

    Google Scholar 

  25. Vanegas, H. Comparative Neurology of the Optic Tectum (Plenum, New York, 1984).

    Book  Google Scholar 

  26. Harris, W. A. & Holt, C. E. From tags to RAGS: chemoaffinity finally has receptors and ligands. Neuron 15, 241–244 (1995).

    Article  CAS  Google Scholar 

  27. Frisen, J. et al. Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20, 235–243 (1998).

    Article  CAS  Google Scholar 

  28. Tanaka, E., Ho, R. & Kirschner, M. W. The role of microtubule dynamics in growth cone motility and axonal growth. J. Cell Biol. 128, 139–155 (1995).

    Article  CAS  Google Scholar 

  29. Gierer, A. Directional cues for growing axons forming the retinotectal projection. Development 101, 479–489 (1987).

    Google Scholar 

  30. Udin, S. B. & Fawcett, J. W. Formation of topographic maps. Annu. Rev. Neurosci. 11, 289–327 (1988).

    Article  CAS  Google Scholar 

  31. Stahl, B. et al. Directional cues for retinal axons. Cold Spring Harb. Symp. Quant. Biol. 55, 351–357 (1990).

    Article  CAS  Google Scholar 

  32. Simon, D. K. & O'Leary, D. D. Responses of retinal axons in vivo and in vitro to position-encoding molecules in the embryonic superior colliculus. Neuron 9, 977–989 (1992).

    Article  CAS  Google Scholar 

  33. Baier, H. & Bonhoeffer, F. Axon guidance by gradients of a target-derived component. Science 255, 472–475 (1992).

    Article  CAS  Google Scholar 

  34. Goldberg, S. Studies on the mechanics of development of the visual pathways in the chick embryo. Dev. Biol. 36, 24–43 (1974).

    Article  CAS  Google Scholar 

  35. Thanos, S. & Bonhoeffer, F. Investigations on the development and topographic order of retinotectal axons: anterograde and retrograde staining of axons and perikarya with rhodamine in vivo. J. Comp. Neurol. 219, 420–430 (1983).

    Article  CAS  Google Scholar 

  36. Thanos, S., Bonhoeffer, F. & Rutishauser, U. Fiber–fiber interaction and tectal cues influence the development of the chicken retinotectal projection. Proc. Natl. Acad. Sci. USA 81, 1906–1910 (1984).

    Article  CAS  Google Scholar 

  37. Burrill, J. D. & Easter, S. S. Jr. The first retinal axons and their microenvironment in zebrafish: Cryptic pioneers and the pretract. J. Neurosci. 15, 2935–2947 (1995).

    Article  CAS  Google Scholar 

  38. Harris, W. A., Holt, C. E. & Bonhoeffer, F. Retinal axons with and without their somata, growing to and arborizing in the tectum of Xenopus embryos: a time-lapse video study of single fibres in vivo. Development 101, 123–133 (1987).

    CAS  PubMed  Google Scholar 

  39. Thanos, S. & Bonhoeffer, F. Axonal arborization in the developing chick retinotectal system. J. Comp. Neurol. 261, 155–164 (1987).

    Article  CAS  Google Scholar 

  40. Bodick, N. & Levinthal, C. Growing optic nerve fibers follow neighbors during embryogenesis. Proc. Natl. Acad. Sci. USA 77, 4374–4378 (1980).

    Article  CAS  Google Scholar 

  41. Roskies, A. L. & O'Leary, D. D. Control of topographic retinal axon branching by inhibitory membrane-bound molecules. Science 265, 799–803 (1994).

    Article  CAS  Google Scholar 

  42. Neale, E., MacDonald, R. L. & Nelson, P. G. Intracellular horseradish peroxidase injections for correlation of light and electron microscopic anatomy with synaptic physiology with cultured mouse spinal cord neurons. Brain Res. 152, 265–282 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For sharing their technical expertise, the authors thank E. Neale, L. Williamson, M. Bastmeyer and G. Gallo. We also thank P. Nelson for providing support and inspiration, along with V. Rehder and P. Atkinson for reading and providing criticisms of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger W. Davenport.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davenport, R., Thies, E. & Cohen, M. Neuronal growth cone collapse triggers lateral extensions along trailing axons. Nat Neurosci 2, 254–259 (1999). https://doi.org/10.1038/6360

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6360

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing