Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Presynaptic modulation of CA3 network activity

An Erratum to this article was published on 01 August 1998

Abstract

The simultaneous discharge of hippocampal CA3 pyramidal cells is a widely studied in vitro model of physiological and pathological network synchronization. This network is rapidly activated because of extensive positive feedback mediated by recurrent axon collaterals. Here we show that population-burst duration is limited by depletion of the releasable glutamate pool at these recurrent synapses. Postsynaptic inhibitory conductances further limit burst duration but are not necessary for burst termination. The interval between bursts in vitro depends on the rate of replenishment of releasable glutamate vesicles and the probability of release of those vesicles at recurrent synapses. Therefore presynaptic factors controlling glutamate release at recurrent synapses regulate the probability and duration of synchronous discharges of the CA3 network.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane currents in CA3 pyramidal cells during population bursts.
Figure 2: Role of postsynaptic inhibitory conductances in the control of CA3 burst discharges.
Figure 3: Releasable glutamate and burst timing.
Figure 4: Glutamate receptor function is not altered following a burst.
Figure 5: Amount of releasable glutamate available at the end of a burst.
Figure 6: Presynaptic modulation of CA3 population bursts.
Figure 7: Schematic of proposed presynaptic modulation of burst termination and timing.

References

  1. Li, X.G., Somogyi, P., Ylinen, A. & Buzsaki, G. The hippocampal CA3 network: an in vivo intracellular labeling study. J. Comp. Neurol. 339, 181–208 ( 1994).

    Article  CAS  Google Scholar 

  2. MacVicar, B.A. & Dudek, F.E. Local circuit interactions in rat hippocampus: interactions between pyramidal cells. Brain Res. 242, 341–344 (1982).

    Article  Google Scholar 

  3. Miles, R. & Wong, R.K.S. Single neurones can initiate synchronized population discharge in the hippocampus. Nature 306 , 371–373 (1983).

    Article  CAS  Google Scholar 

  4. Buzsaki, G. Hippocampal sharp waves: their origin and significance. Brain Res. 398:242–252 (1986).

    Article  CAS  Google Scholar 

  5. Chrobak, J.J. & Buzsaki, G. High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat. J. Neurosci. 16, 3056– 3066 (1996).

    Article  CAS  Google Scholar 

  6. Traub, R.D. & Miles, R. in Neuronal networks of the hippocampus Ch. 6 (Cambridge Univ. Press, 1991).

    Book  Google Scholar 

  7. Traub, R.D., Knowles, W.D., Miles, R. & Wong, R.K.S. Synchronized afterdischarges in the hippocampus: simulation studies of the cellular mechanism. Neuroscience 12, 1191–1200 (1984).

    Article  CAS  Google Scholar 

  8. Jefferys, J.G.R. in The Epilepsies, 4th edn (eds Laidlaw, J., Richens, A. & Chadwick, D.W.) 241–276 (Edinburgh, Churchill Livingstone, 1993).

    Google Scholar 

  9. Wong, R.K.S. & Prince, D.A. Afterpotential generation in hippocampal pyramidal cells. J. Neurophysiol. 45, 86 –97 (1981).

    Article  CAS  Google Scholar 

  10. Bush, P.C. & Sejnowski, T.J. Effects of inhibition and dendritic saturation in simulated neocortical pyramidal cells. J. Neurophysiol. 71, 2183–2193 ( 1994).

    Article  CAS  Google Scholar 

  11. Miles, R., Wong, R.K.S. & Traub, R.D. Synchronized afterdischarges in the hippocampus: contribution of local synaptic interactions. Nature Neuroscience 12, 1179– 1189 (1984).

    CAS  Google Scholar 

  12. Rutecki, P.A., Lebeda, F.J. & Johnston, D. Epileptiform activity in the hippocampus produced by tetraethylammonium . J. Neurophysiol. 64, 1077– 1088 (1990).

    Article  CAS  Google Scholar 

  13. Mueller, A.L. & Dunwiddie, T.V. Anticonvulsant and proconvulsant actions of alpha- and beta-noradrenergic agonists on epileptiform activity in rat hippocampus in vitro. Epilepsia 24, 57–64 (1983).

    Article  CAS  Google Scholar 

  14. Chamberlin, N.L. & Dingledine, R. Control of epileptiform burst rate by CA3 hippocampal cell afterhyperpolarizations. Brain Res . 492, 337–346 ( 1989).

    Article  CAS  Google Scholar 

  15. Mayr, O. The origins of feedback control (MIT Press, Cambridge, Massachusetts, 1970).

    Book  Google Scholar 

  16. Martina, M. & Jonas, P. Functional differences in Na+ channel gating between fast-spiking interneurones and principal neurones of rat hippocampus . J. Physiol. 505, 593– 603 (1997).

    Article  CAS  Google Scholar 

  17. Scanziani, M. et al. Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors. Nature 385, 630– 634 (1997).

    Article  CAS  Google Scholar 

  18. Otis, T., Zhang, S. & Trussell, L.O. Direct measurement of AMPA receptor desensitization induced by glutamatergic synaptic transmission. J. Neurosci. 16, 7496–7504 (1996).

    Article  CAS  Google Scholar 

  19. von Gersdorff, H., Schneggenburger, R., Weis, S. & Neher, E. Presynaptic depression at a calyx synapse: the small contribution of metabotropic glutamate receptors. J. Neurosci. 17, 8137 –8146 (1997).

    Article  CAS  Google Scholar 

  20. Dobrunz, L.E. & Stevens, C.F. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18, 995–1008 (1997).

    Article  CAS  Google Scholar 

  21. Harris, K.M. & Sultan, P. Variation in the number, location, and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses. Neuropharmacology 34, 1387–1395 ( 1995).

    Article  CAS  Google Scholar 

  22. Schikorski, T. & Stevens, C.F. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17 , 5858–5867 (1997).

    Article  CAS  Google Scholar 

  23. Liu, G. & Tsien, R.W. Properties of synaptic transmission at single hippocampal synaptic boutons. Nature 375, 404–408 (1995).

    Article  CAS  Google Scholar 

  24. Stevens, C.F. & Tsujimoto, T. Estimates for the pool size of releasable quanta at a single central synapse and for the time required to fill the pool. Proc. Natl Acad. Sci. USA 92, 846–849 (1995).

    Article  CAS  Google Scholar 

  25. Murthy, V.N., Sejnowski, T.J. & Stevens, C.F. Heterogenous release properties of visualized individual hippocampal synapses. Neuron 18, 599– 612 (1997).

    Article  CAS  Google Scholar 

  26. Madison, D.V. & Nicoll, R.A. Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299, 636–638 (1986).

    Article  Google Scholar 

  27. Stevens, C.F. Quantal release of neurotransmitter and long-term potentiation. Neuron 10(suppl), 55–63 (1996).

    Google Scholar 

  28. Patneau D.K., Vyklicky L. Jr & Mayer M.L. Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate. J Neurosci. 13, 3496–3509 (1993).

    Article  CAS  Google Scholar 

  29. Chamberlin, N.L., Traub, R.D. & Dingledine R. Role of EPSPs in initiation of spontaneous synchronized burst firing in rat hippocampal neurons bathed in high potassium. J. Neurophysiol. 64, 1000–1008 (1990).

    Article  CAS  Google Scholar 

  30. Fatt, P. & Katz, B. Spontaneous subthreshold activity at motor nerve endings. J. Physiol. 117, 109– 128 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Manabe T., Renner, P. & Nicoll, R.A. Postsynaptic contribution to long-term potentiation revealed by the analysis of miniature synaptic currents. Nature 355, 50–55 (1992).

    Article  CAS  Google Scholar 

  32. Rosenmund, C. & Stevens, C.F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16 , 1197–1207 (1996).

    Article  CAS  Google Scholar 

  33. Capogna, M., Gähwiler, B.H. & Thompson, S.M. Presynaptic inhibition of calcium-dependent and independent release elicited with ionmycin, gadolinium, and α-latrotoxin in the hippocampus. J. Neurophysiol. 75, 2017– 2028 (1996).

    Article  CAS  Google Scholar 

  34. Dunwiddie, T.V. Endogenously released adenosine regulates excitability in the in vitro hippocampus. Epilepsia 21, 541–548 ( 1980).

    Article  CAS  Google Scholar 

  35. Swartzwelder, H.S., Lewis, D.V., Anderson, W.W. & Wilson, W.A. Seizure-like events in brain slices: suppression by interictal activity. Brain Res. 410, 362–366 (1987).

    Article  CAS  Google Scholar 

  36. Thompson, S.M. & Gähwiler, B.H. Activity-dependent disinhibition. II.effects of extracellular potassium, furosemide, and membrane potential on ECl in hippocampal CA3 neurons. J. Neurophysiol. 61, 512–523 (1989).

    Article  CAS  Google Scholar 

  37. Anderson, C.M. & Jefferys, J.G.R. Ventral CA3 exhibits a lower threshold to disinhibition than dorsal hippocampus. Epilepsia 38(Supp 8), 16 (1997).

    Article  Google Scholar 

  38. Korn, S.J., Giacchino, J.L., Chamberlin, N.L. & Dingledine, R. Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition. J. Neurophysiol. 57, 325–340 (1987).

    Article  CAS  Google Scholar 

  39. Scharfman, H.E. EPSPs of dentate gyrus granule cells during epileptiform bursts of dentate hilar "mossy" cells and area CA3 pyramidal cells in disinhibited rat hippocampal slices . J. Neurosci. 14, 6041– 6057 (1994).

    Article  CAS  Google Scholar 

  40. Whittington, M.A. & Jefferys, J.G.R. Epileptic activity outlasts disinhibition after intrahippocampal tetanus toxin in the rat. J. Physiol. 481, 593–604 (1994).

    Article  CAS  Google Scholar 

  41. Tanaka, K. et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276, 1699– 1702 (1997).

    Article  CAS  Google Scholar 

  42. Barbarosie, M. & Avoli, M. CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. J. Neurosci. 17, 9308–9314 (1997).

    Article  CAS  Google Scholar 

  43. Stasheff, S.F., Anderson, W.W., Clark, S. & Wilson, W.A. NMDA antagonists differentiate epileptogenesis from seizure expression in an in vitro model. Science 245, 648– 651 (1989).

    Article  CAS  Google Scholar 

  44. Rafiq, A., DeLorenzo, R.J. & Coulter, D.A. Generation and propagation of epileptiform discharges in a combined entorhinal cortex/hippocampal slice. J. Neurophysiol. 70, 1962–1974 ( 1993).

    Article  CAS  Google Scholar 

  45. Traub, R.D., Borck, C., Colling, S.B. & Jefferys J.G. On the structure of ictal events in vitro. Epilepsia 37, 879–891 (1996).

    Article  CAS  Google Scholar 

  46. Taylor, G.W., Merlin, L.R. & Wong, R.K. Synchronized oscillations in hippocampal CA3 neurons induced by metabotropic glutamate receptor activation. J. Neurosci. 15, 8039–8052 (1995).

    Article  CAS  Google Scholar 

  47. Traub R.D., Miles, R. & Jefferys, J.G. Synaptic and intrinsic conductances shape picrotoxin-induced synchronized after-discharges in the guinea-pig hippocampal slice. J Physiol. (Lond.) 461, 525–547 (1993).

    Article  CAS  Google Scholar 

  48. Ylinen, A. et al. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5, 78–90 (1995).

    Article  CAS  Google Scholar 

  49. Kim, U., Sanchez-Vives, M.V. & McCormick, D.A. Functional dynamics of GABAergic inhibition in the thalamus . Science 278, 130–134 (1997).

    Article  CAS  Google Scholar 

  50. Staley, K.J., Soldo, B. & Proctor W. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269, 977–981 ( 1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Thomas Dunwiddie, Darrell Lewis, Charles Stevens, and Roger Traub for comments and discussions. This work was supported by the NIH and the Epilepsy Foundation of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Staley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staley, K., Longacher, M., Bains, J. et al. Presynaptic modulation of CA3 network activity. Nat Neurosci 1, 201–209 (1998). https://doi.org/10.1038/651

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/651

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing