Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A mapping label required for normal scale of body representation in the cortex

Abstract

The neocortical primary somatosensory area (S1) consists of a map of the body surface. The cortical area devoted to different regions, such as parts of the face or hands, reflects their functional importance. Here we investigated the role of genetically determined positional labels in neocortical mapping. Ephrin-A5 was expressed in a medial > lateral gradient across S1, whereas its receptor EphA4 was in a matching gradient across the thalamic ventrobasal (VB) complex, which provides S1 input. Ephrin-A5 had topographically specific effects on VB axon guidance in vitro. Ephrin-A5 gene disruption caused graded, topographically specific distortion in the S1 body map, with medial regions contracted and lateral regions expanded, changing relative areas up to 50% in developing and adult mice. These results provide evidence for within-area thalamocortical mapping labels and show that a genetic difference can cause a lasting change in relative scale of different regions within a topographic map.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ephrin-A5 RNA expression within motor and sensory areas of the developing rodent neocortex.
Figure 2: Ephrin-A5 graded expression across the developing rodent somatosensory cortex.
Figure 3: The VB complex, the main somatosensory relay to the cortex, displays graded Eph receptor expression, and its axons are differentially repelled by ephrin-A5 in vitro.
Figure 4: Connectivity and pattern of the thalamocortical somatosensory map are grossly normal in ephrin-A5−/− mice.
Figure 5: Expansions and contractions in the cortical somatosensory map of ephrin-A-5−/− mice.

Similar content being viewed by others

References

  1. Penfield, W. & Rasmussen, T., The Cerebral Cortex of Man (Macmillan, New York, 1950).

    Google Scholar 

  2. Woolsey, C. N. in Biological and Biochemical Bases of Behavior (eds. Harlow, H. F. & Woolsey, C. N.) 63–81 (Univ. of Wisconsin Press, Madison, Wisconsin, 1958).

    Google Scholar 

  3. White, L. E., Lucas, G., Richards, A. & Purves, D. Cerebral asymmetry and handedness. Nature 368, 197–198 (1994).

    Article  CAS  Google Scholar 

  4. Kaas, J. H. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 51–71 (MIT Press, Cambridge, Massachusetts, 1995).

    Google Scholar 

  5. Riddle, D. R. & Purves, D. Individual variation and lateral asymmetry of the rat primary somatosensory cortex. J. Neurosci. 15, 4184–4195 (1995).

    Article  CAS  Google Scholar 

  6. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B. & Taub, E. Increased cortical representation of the fingers of the left hand in string players. Science 270, 305–307 (1995).

    Article  CAS  Google Scholar 

  7. Buonomano, D. V. & Merzenich, M. M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 (1998).

    Article  CAS  Google Scholar 

  8. Howe, M. J. A., Davidson, J. W. & Sloboda, J. A. Innate talents: reality or myth? Behav. Brain Sci. 21, 399–442 (1998).

    Article  CAS  Google Scholar 

  9. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  10. Hubel, D. H. & Wiesel, T. N. Early exploration of the visual cortex. Neuron 20, 401–412 (1998).

    Article  CAS  Google Scholar 

  11. Crair, M. C. Neuronal activity during development: permissive or instructive? Curr. Opin. Neurobiol. 9, 88–93 (1999).

    Article  CAS  Google Scholar 

  12. Welker, E. & Van der Loos, H. Is areal extent in sensory cerebral cortex determined by peripheral innervation density? Exp. Brain Res. 63, 650–654 (1986).

    Article  CAS  Google Scholar 

  13. O'Leary, D. D. M., Ruff, N. L. & Dyck, R. H. Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Curr. Opin. Neurobiol. 4, 535–544 (1994).

    Article  CAS  Google Scholar 

  14. Fox, K., Schlaggar, B. L., Glazewski, S. & O'Leary, D. D. M. Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex. Proc. Natl. Acad. Sci. USA 93, 5584–5589 (1996).

    Article  CAS  Google Scholar 

  15. Iwasato, T. et al. NMDA receptor-dependent refinement of somatotopic maps. Neuron 19, 1201–1210 (1997).

    Article  CAS  Google Scholar 

  16. Goodman, C. S. & Shatz, C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72 (Suppl.), 77–98 (1993).

    Article  Google Scholar 

  17. Molnar, Z. & Blakemore, C. How do thalamic axons find their way to the cortex? Trends Neurosci. 18, 389–397 (1995).

    Article  CAS  Google Scholar 

  18. Killackey, H. P., Rhoades, R. W. & Bennett-Clarke, C. A. The formation of a cortical somatotopic map. Trends Neurosci. 18, 402–407 (1995).

    Article  CAS  Google Scholar 

  19. Sperry, R. W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl. Acad. Sci. USA 50, 703–710 (1963).

    Article  CAS  Google Scholar 

  20. Molnar, Z. & Blakemore, C. Lack of regional specificity for connections formed between thalamus and cortex in coculture. Nature 351, 475–477 (1991).

    Article  CAS  Google Scholar 

  21. Roe, A. W., Pallas, S. L., Hahm, J. O. & Sur, M. A map of visual space induced in primary auditory cortex. Science 250, 818–820 (1990).

    Article  CAS  Google Scholar 

  22. Schlaggar, B. L. & O'Leary, D. D. M. Potential of visual cortex to develop an array of functional units unique to somatosensory cortex. Science 252, 1556–1560 (1991).

    Article  CAS  Google Scholar 

  23. Cheng, H. J., Nakamoto, M., Bergemann, A. D. & Flanagan, J. G. Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82, 371–381 (1995).

    Article  CAS  Google Scholar 

  24. Drescher, U. et al. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370 (1995).

    Article  CAS  Google Scholar 

  25. Nakamoto, M. et al. Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell 86, 755–766 (1996).

    Article  CAS  Google Scholar 

  26. Frisen, J. et al. Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20, 235–243 (1998).

    Article  CAS  Google Scholar 

  27. Feldheim, D. A. et al. Topographic guidance labels in a sensory projection to the forebrain. Neuron 21, 1303–1313 (1998).

    Article  CAS  Google Scholar 

  28. Castellani, V., Yue, Y., Gao, P. P., Zhou, R. & Bolz, J. Dual action of a ligand for Eph receptor tyrosine kinases on specific populations of axons during the development of cortical circuits. J. Neurosci. 18, 4663–4672 (1998).

    Article  CAS  Google Scholar 

  29. Gao, P. P. et al. Regulation of thalamic neurite outgrowth by the Eph ligand ephrin-A5: implications in the development of thalamocortical projections. Proc. Natl. Acad. Sci. USA 95, 5329–5334 (1998).

    Article  CAS  Google Scholar 

  30. Donoghue, M. J. & Rakic, P. Molecular evidence for the early specification of presumptive functional domains in the embryonic primate cerebral cortex. J. Neurosci. 19, 5967–5979 (1999).

    Article  CAS  Google Scholar 

  31. Mackarehtschian, K., Lau, C. K., Caras, I. & McConnell, S. K. Regional differences in the developing cerebral cortex revealed by ephrin-A5 expression. Cereb. Cortex 9, 601–610 (1999).

    Article  CAS  Google Scholar 

  32. Agmon, A., Yang, L. T., O'Dowd, D. K. & Jones, E. G. Organized growth of thalamocortical axons from the deep tier of terminations into layer IV of developing mouse barrel cortex. J. Neurosci. 13, 5365–5382 (1993).

    Article  CAS  Google Scholar 

  33. Cheng, H. J. & Flanagan, J. G. Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. Cell 79, 157–168 (1994).

    Article  CAS  Google Scholar 

  34. Flanagan, J. G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345 (1998).

    Article  CAS  Google Scholar 

  35. Paxinos, G. The Rat Nervous System (Academic, San Diego, California, 1995).

    Google Scholar 

  36. Walter, J., Henke-Fahle, S. & Bonhoeffer, F. Avoidance of posterior tectal membranes by temporal retinal axons. Development 101, 909–913 (1987).

    CAS  PubMed  Google Scholar 

  37. McCasland, J. S., Bernardo, K. L., Probst, K. L. & Woolsey, T. A. Cortical local circuit axons do not mature after early deafferentation. Proc. Natl. Acad. Sci. USA 89, 1832–1836 (1992).

    Article  CAS  Google Scholar 

  38. Chiaia, N. L. et al. Evidence for prenatal competition among the central arbors of trigeminal primary afferent neurons. J. Neurosci. 12, 62–76 (1992).

    Article  CAS  Google Scholar 

  39. Renehan, W. E., Crissman, R. S. & Jacquin, M. F. Primary afferent plasticity following partial denervation of the trigeminal brainstem nuclear complex in the postnatal rat. J. Neurosci. 14, 721–739 (1994).

    Article  CAS  Google Scholar 

  40. Killackey, H. P., Chiaia, N. L., Bennett-Clarke, C. A., Eck, M. & Rhoades, R. W. Peripheral influences on the size and organization of somatotopic representations in the fetal rat cortex. J. Neurosci. 14, 1496–1506 (1994).

    Article  CAS  Google Scholar 

  41. Fox, K. A critical period for experience-dependent synaptic plasticity in rat barrel cortex. J. Neurosci. 12, 1826–1838 (1992).

    Article  CAS  Google Scholar 

  42. Gao, W. Q. et al. Regulation of hippocampal synaptic plasticity by the tyrosine kinase receptor, Rek7/EphA5, and its ligand, AL-1/ephrin-A5. Mol. Cell. Neurosci. 11, 247–259 (1998).

    Article  CAS  Google Scholar 

  43. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    Article  CAS  Google Scholar 

  44. O'Leary, D. D. M. Do cortical areas emerge from a protocortex? Trends Neurosci. 12, 400–406 (1989).

    Article  CAS  Google Scholar 

  45. Miyashita-Lin, E. M., Hevner, R., Wassarman, K. M., Martinez, S. & Rubenstein, J. L. R. Early neocortical regionalization in the absence of thalamic innervation. Science 285, 906–909 (1999).

    Article  CAS  Google Scholar 

  46. Crair, M. C., Gillespie, D. C. & Stryker, M. P. The role of visual experience in the development of columns in cat visual cortex. Science 279, 566–570 (1998).

    Article  CAS  Google Scholar 

  47. Crowley, J. C. & Katz, L. C. Development of ocular dominance columns in the absence of retinal input. Nat. Neurosci. 2, 1125–1130 (1999).

    Article  CAS  Google Scholar 

  48. Winslow, J. W. et al. Cloning of AL-1, a ligand for an Eph-related tyrosine kinase receptor involved in axon bundle formation. Neuron 14, 973–981 (1995).

    Article  CAS  Google Scholar 

  49. Wong-Riley, M. Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res. 171, 11–28 (1979).

    Article  CAS  Google Scholar 

  50. Schlaggar, B. L., De Carlos, J. A. & O'Leary, D. D. M. Acetylcholinesterase as an early marker of the differentiation of dorsal thalamus in embryonic rats. Dev. Brain Res. 75, 19–30 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank David Feldheim, Michael Hansen, Verne Caviness, David Van Vactor, Rick Born, Gerard Dallal, Sonal Jhaveri, Clay Reid and Michael Belliveau for help and advice. This work was supported by grants from the US NIH and NSF, the Swedish MRC, the Klingenstein foundation, the NATO/Belgian-American Educational Foundation and the Belgian FNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Flanagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanderhaeghen, P., Lu, Q., Prakash, N. et al. A mapping label required for normal scale of body representation in the cortex. Nat Neurosci 3, 358–365 (2000). https://doi.org/10.1038/73929

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73929

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing