Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activity in primary visual cortex predicts performance in a visual detection task

An Erratum to this article was published on 01 December 2000

Abstract

Visual attention can affect both neural activity and behavior in humans. To quantify possible links between the two, we measured activity in early visual cortex (V1, V2 and V3) during a challenging pattern-detection task. Activity was dominated by a large response that was independent of the presence or absence of the stimulus pattern. The measured activity quantitatively predicted the subject's pattern-detection performance: when activity was greater, the subject was more likely to correctly discern the presence or absence of the pattern. This stimulus-independent activity had several characteristics of visual attention, suggesting that attentional mechanisms modulate activity in early visual cortex, and that this attention-related activity strongly influences performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental protocol and typical result.
Figure 2: Trial-to-trial variability in V1 activity was highly predictive of behavioral performance in the threshold detection task.
Figure 3: Activity in extrastriate areas V2 and V3 predicted performance.
Figure 4: V1 activity was spatially selective.
Figure 5: Extrastriate activity was also spatially selective.
Figure 6: V1 activity depended on task difficulty.
Figure 7: Extrastriate activity also depended on task difficulty.

Similar content being viewed by others

References

  1. Pashler, H. E. The Psychology of Attention (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  2. Posner, M. I., Snyder, C. R. & Davidson, B. J. Attention and detection of signals. J. Exp. Psychol. 109, 160–174 (1980).

    Article  CAS  Google Scholar 

  3. Graham, N. Visual Pattern Analyzers (Oxford Univ. Press, New York, 1989).

    Book  Google Scholar 

  4. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193– 222 (1995).

    Article  CAS  Google Scholar 

  5. Martínez, A. et al. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat. Neurosci. 2, 364–369 (1999).

    Article  Google Scholar 

  6. Chawla, D., Rees, G. & Friston, K.J. The physiological basis of attentional modulation in extrastriate visual areas. Nat. Neurosci. 2, 671– 676 (1999).

    Article  CAS  Google Scholar 

  7. Brefczynski, J. A. & DeYoe, E. A. A physiological correlate of the ‘spotlight’ of visual attention. Nat. Neurosci. 2, 370–374 (1999).

    Article  CAS  Google Scholar 

  8. Tootell, R. B. et al. The retinotopy of visual spatial attention. Neuron 21, 1409–1422 (1998).

    Article  CAS  Google Scholar 

  9. Gandhi, S. P., Heeger, D. J. & Boynton, G. M. Spatial attention affects brain activity in human primary visual cortex. Proc. Natl. Acad. Sci. USA 96 , 3314–3319 (1999).

    Article  CAS  Google Scholar 

  10. Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R. & Ungerleider, L. G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation . Neuron 22, 751–761 (1999).

    Article  CAS  Google Scholar 

  11. Hillyard, S. A., Vogel, E. K. & Luck, S. J. Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Phil. Trans. R. Soc. Lond. B Biol. Sci. 353, 1257– 1270 (1998).

    Article  CAS  Google Scholar 

  12. Reynolds, J. H., Chelazzi, L. & Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736– 1753 (1999).

    Article  CAS  Google Scholar 

  13. Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  Google Scholar 

  14. McAdams, C. J. & Maunsell, J. H. Effects of attention on the reliability of individual neurons in monkey visual cortex . Neuron 23, 765–773 (1999).

    Article  CAS  Google Scholar 

  15. Colby, C. L., Duhamel, J. R. & Goldberg, M. E. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996).

    Article  CAS  Google Scholar 

  16. Motter, B. C. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 (1993).

    Article  CAS  Google Scholar 

  17. Roelfsema, P. R., Lamme, V. A. & Spekreijse, H. Object-based attention in the primary visual cortex of the macaque monkey. Nature 395, 376– 381 (1998).

    Article  CAS  Google Scholar 

  18. Haenny, P. E. & Schiller, P. H. State dependent activity in monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks . Exp. Brain Res. 69, 225– 244 (1988).

    Article  CAS  Google Scholar 

  19. Haenny, P. E., Maunsell, J. H. & Schiller, P. H. State dependent activity in monkey visual cortex. II. Retinal and extraretinal factors in V4. Exp. Brain Res. 69, 245–259 (1988).

    Article  CAS  Google Scholar 

  20. Spitzer, H., Desimone, R. & Moran, J. Increased attention enhances both behavioral and neuronal performance. Science 240, 338– 340 (1988).

    Article  CAS  Google Scholar 

  21. Ogawa, S., Lee, T. M., Kay, A. R. & Tank, D. W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 87, 9868– 9872 (1990).

    Article  CAS  Google Scholar 

  22. Kwong, K. K. et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 89, 5675–5679 (1992).

    Article  CAS  Google Scholar 

  23. Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).

    Article  CAS  Google Scholar 

  24. Belliveau, J. W. et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 254, 716– 719 (1991).

    Article  CAS  Google Scholar 

  25. Malonek, D. & Grinvald, A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272, 551–554 (1996).

    Article  CAS  Google Scholar 

  26. Buxton, R. B., Wong, E. C. & Frank, L. R. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn. Reson. Med. 39, 855–864 (1998).

    Article  CAS  Google Scholar 

  27. Boynton, G. M., Engel, S. A., Glover, G. H. & Heeger, D. J. Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16, 4207– 4221 (1996).

    Article  CAS  Google Scholar 

  28. Tootell, R. B. et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci. 15, 3215–3230 (1995).

    Article  CAS  Google Scholar 

  29. Boynton, G.M., Demb, J. B., Glover, G. H. & Heeger, D. J. Neural basis of contrast discrimination. Vision Res. 39, 257–269 (1999).

    Article  CAS  Google Scholar 

  30. Carandini, M., Heeger, D. J. & Movshon, J. A. Linearity and normalization in simple cells of the macaque primary visual cortex. J. Neurosci. 17, 8621–8644 (1997).

    Article  CAS  Google Scholar 

  31. Demb, J., Boynton, G. M. & Heeger, D. J. Functional magnetic resonance imaging of early visual pathways in dyslexia. J. Neurosci. 17, 8621 –8644 (1997).

    Article  Google Scholar 

  32. Shulman, G. L. et al. Areas involved in encoding and applying directional expectations to moving objects. J. Neurosci. 19, 9480 –9496 (1999).

    Article  CAS  Google Scholar 

  33. Heeger, D. J., Boynton, G. M., Demb, J. B., Seidemann, E. & Newsome, W. T. Motion opponency in visual cortex . J. Neurosci. 19, 7162– 7174 (1999).

    Article  CAS  Google Scholar 

  34. Wandell, B. A. et al. Color signals in human motion-selective cortex. Neuron 24, 901–909 (1999).

    Article  CAS  Google Scholar 

  35. Seidemann, E., Poirson, A. B., Wandell, B. A. & Newsome, W. T. Color signals in area MT of the macaque monkey. Neuron 24, 911–917 (1999).

    Article  CAS  Google Scholar 

  36. Rees, G., Friston, K. & Koch, C. A direct quantitative relationship between the functional properties of human and macaque V5. Nat. Neurosci. 3, 716–723 (2000).

    Article  CAS  Google Scholar 

  37. Heeger, D. J., Huk, A. C., Geisler, W. S. & Albrecht, D. G. Spikes versus BOLD: What does neuroimaging tell us about neuronal activity? Nat. Neurosci. 3, 631– 633 (2000).

    Article  CAS  Google Scholar 

  38. Ito, M. & Gilbert, C. D. Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron 22, 593–604 (1999).

    Article  CAS  Google Scholar 

  39. Nestares, O. & Heeger, D. J. Robust multiresolution alignment of MRI brain volumes. Magn. Reson. Med. 43, 705–715 (2000).

    Article  CAS  Google Scholar 

  40. Engel, S. A. et al. fMRI of human visual cortex. Nature 369, 525 (1994).

    Article  CAS  Google Scholar 

  41. Engel, S. A., Glover, G. H. & Wandell, B. A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–192 (1997).

    Article  CAS  Google Scholar 

  42. Sereno, M. I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  CAS  Google Scholar 

  43. DeYoe, E. A. et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 2382 –2386 (1996).

    Article  CAS  Google Scholar 

  44. Glover, G. H. & Lai, S. Self-navigated spiral fMRI: interleaved versus single-shot. Magn. Reson. Med. 39, 361–368 (1998).

    Article  CAS  Google Scholar 

  45. Glover, G. H. Simple analytic spiral K-space algorithm. Magn. Reson. Med. 42, 412–415 (1999).

    Article  CAS  Google Scholar 

  46. Smith, A. M. et al. Investigation of low frequency drift in fMRI signal. Neuroimage 9, 526–533 (1999).

    Article  CAS  Google Scholar 

  47. Aguirre, G. K., Zarahn, E. & D'Esposito, M. The variability of human, BOLD hemodynamic responses . Neuroimage 8, 360–369 (1998).

    Article  CAS  Google Scholar 

  48. Green, D. M. & Swets, J. A. Signal Detection Theory and Psychophysics (Peninsula Publishing, Los Altos, California, 1988 ).

    Google Scholar 

  49. Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman & Hall, New York, 1993).

    Book  Google Scholar 

Download references

Acknowledgements

We thank W.T. Newsome, B.A. Wandell and M. Carandini for comments. This research was supported by an NEI grant (R01-EY11794), a grant from the Human Frontier Science Program, and two NRSA postdoctoral research fellowships (F32-EY06899 and F32-EY06952).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Heeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ress, D., Backus, B. & Heeger, D. Activity in primary visual cortex predicts performance in a visual detection task. Nat Neurosci 3, 940–945 (2000). https://doi.org/10.1038/78856

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/78856

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing