Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Speed skills: measuring the visual speed analyzing properties of primate MT neurons

Abstract

Knowing the direction and speed of moving objects is often critical for survival. However, it is poorly understood how cortical neurons process the speed of image movement. Here we tested MT neurons using moving sine-wave gratings of different spatial and temporal frequencies, and mapped out the neurons' spatiotemporal frequency response profiles. The maps typically had oriented ridges of peak sensitivity as expected for speed-tuned neurons. The preferred speed estimate, derived from the orientation of the maps, corresponded well to the preferred speed when moving bars were presented. Thus, our data demonstrate that MT neurons are truly sensitive to the object speed. These findings indicate that MT is not only a key structure in the analysis of direction of motion and depth perception, but also in the analysis of object speed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of a moving edge in the spatiotemporal frequency domain.
Figure 2: Data from four representative MT neurons in our sample.
Figure 3: Example of Gaussian fitting procedure.
Figure 4: Contribution of the orientation parameter (θ) to the two-dimensional Gaussian-MT data fits.
Figure 5: Test of the oriented two-dimensional Gaussian alignment.
Figure 6: Relationship between the spectral receptive field orientation of representative MT neurons and their preferred speed tuning obtained from moving bar tests (see Methods).
Figure 7: Prediction of the spectral receptive field orientation of MT neurons from their optimum speed tuning, obtained using a moving bar.

Similar content being viewed by others

References

  1. Gibson, J. J. The Perception of the Visual World (Houghton Mifflin, Boston, 1950).

    Google Scholar 

  2. Nakayama, K. Biological image motion processing: a review. Vision Res. 25, 625–660 (1984).

    Article  Google Scholar 

  3. Koenderink, J. J. & van Doorn, A. J. Invariant properties of the motion parallax field due to the movement of rigid bodies relative to the observer. Opt. Acta. 22, 773–791 (1975).

    Article  Google Scholar 

  4. Longuet-Higgins, H. C. & Prazdny, K. The interpretation of moving retinal images. Proc. R. Soc. Lond. B Biol. Sci. 208, 385–397 (1980).

    Article  CAS  Google Scholar 

  5. Perrone, J. A. & Stone, L. S. A model of self-motion estimation within primate extrastriate visual cortex. Vision Res. 34, 2917–2938 (1994).

    Article  CAS  Google Scholar 

  6. Dubner, R. & Zeki, S. M. Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus. Brain Res. 35, 528–532 (1971).

    Article  CAS  Google Scholar 

  7. Maunsell, J. H. R. & Newsome, W. T. Visual processing in monkey extrastriate cortex. Annu. Rev. Neurosci. 10, 363–402 (1987).

    Article  CAS  Google Scholar 

  8. Adelson, E. H. & Movshon, J. A. Phenomenal coherence of moving visual patterns. Nature 300, 523–525 (1982).

    Article  CAS  Google Scholar 

  9. Albright, T. D. Direction and orientation selectivity of neurons in visual area MT of the macaque. J. Neurophysiol. 52, 1106–1129 (1984).

    Article  CAS  Google Scholar 

  10. Stoner, G. R. & Albright, T. D. Neural correlates of perceptual motion coherence. Nature 358, 412–414 (1992).

    Article  CAS  Google Scholar 

  11. Newsome, W. T., Britten, K. H. & Movshon, J. A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989).

    Article  CAS  Google Scholar 

  12. Newsome, W. T., Wurtz, R. H., Dursteler, M. R. & Mikami, A. Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. J. Neurosci. 5, 825–840 (1985).

    Article  CAS  Google Scholar 

  13. Lisberger, S. G. & Movshon, J. A. Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J. Neurosci. 19, 2224–2246 (1999).

    Article  CAS  Google Scholar 

  14. Tanaka, K. & Saito, H. Analysis of the motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 62, 626–641 (1989).

    Article  CAS  Google Scholar 

  15. Maunsell, J. H. R. & Van Essen, D. C. Functional properties of neurons in the middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, orientation. J. Neurophysiol. 49, 1127–1147 (1983).

    Article  CAS  Google Scholar 

  16. Lagae, S., Raiguel, S. & Orban, G. A. Speed and direction selectivity of macaque middle temporal neurons. J. Neurophysiol. 69, 19–39 (1993).

    Article  CAS  Google Scholar 

  17. Rodman, H. R. & Albright, T. D. Coding of visual stimulus velocity in area MT of the macaque. Vision Res. 27, 2035–2048 (1987).

    Article  CAS  Google Scholar 

  18. Felleman, D. J. & Kaas, J. H. Receptive-field properties of neurons in the middle temporal visual area (MT) of owl monkeys. J. Neurophysiol. 52, 488–513 (1984).

    Article  CAS  Google Scholar 

  19. Orban, G. A., Kennedy, H. & Bullier, J. Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: Influence of eccentricity. J. Neurophysiol. 56, 462–480 (1986).

    Article  CAS  Google Scholar 

  20. Foster, K. H., Gaska, J. P., Nagler, M. & Pollen, D. A. Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. J. Physiol. (Lond.) 365, 331–363 (1985).

    Article  CAS  Google Scholar 

  21. Watson, A. B. & Ahumada, A. J. in Motion: Perception and Representation (ed. Tsotsos, J. K.) 1–10 (Association for Computing Machinery, New York, 1983).

    Google Scholar 

  22. Bracewell, R. N. The Fourier Transform and its Applications (McGraw-Hill, New York, 1978).

    Google Scholar 

  23. Watson, A. B., Ahumada, A. J. Jr. & Farrell, J. E. Window of visibility: a psychophysical theory of fidelity in time-sampled visual motion displays. J. Opt. Soc. Am. A 3, 300–307 (1986).

    Article  Google Scholar 

  24. Fahle, M. & Poggio, T. Visual hyperacuity: spatiotemporal interpolation in human vision. Proc. R. Soc. Lond. B Biol. Sci. 213, 451–477 (1981).

    Article  CAS  Google Scholar 

  25. Draper, N. R. & Smith, H. Applied Regression Analysis (Wiley-Interscience, New York, 1998).

    Book  Google Scholar 

  26. Treue, S., Hol, K. & Rauber, H. J. Seeing multiple directions of motion-physiology and psychophysics. Nat. Neurosci. 3, 270–276 (2000).

    Article  CAS  Google Scholar 

  27. Del Viva, M. M. & Morrone, M. C. Motion analysis by feature tracking. Vision Res. 38, 3633–3653 (1998).

    Article  CAS  Google Scholar 

  28. Perrone, J. A. Model for the computation of self-motion in biological systems. J. Opt. Soc. Am. A 9, 177–194 (1992).

    Article  CAS  Google Scholar 

  29. Perrone, J. A. & Stone, L. S. Emulating the visual receptive field properties of MST neurons with a template model of heading estimation. J. Neurosci. 18, 5958–5975 (1998).

    Article  CAS  Google Scholar 

  30. Dobkins, K. R. & Albright, T. D. What happens if it changes color when it moves?: The nature of chromatic input to macaque visual area MT. J. Neurosci. 14, 4854–4870 (1994).

    Article  CAS  Google Scholar 

  31. Thiele, A., Dobkins, K. R. & Albright, T. D. The contribution of color to motion processing in macaque middle temporal area. J. Neurosci. 19, 6571–6587 (1999).

    Article  CAS  Google Scholar 

  32. Thiele, A., Distler, C. & Hoffmann, K. P. Decision related activity in the macaque dorsal visual pathway. Eur. J. Neurosci. 11, 2044–2058 (1999).

    Article  CAS  Google Scholar 

  33. Watson, A. B. et al. Use of a Raster framebuffer in vision research. Behav. Res. Meth. Instr. Comp. 18, 587–594 (1986).

    Article  Google Scholar 

  34. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. Responses of neurons in macaque MT to stochastic motion signals. Vis. Neurosci. 10, 1157–1169 (1993).

    Article  CAS  Google Scholar 

  35. Movshon, J. A. The velocity tuning of single neurons in the striate cortex. J. Physiol. (Lond.) 249, 445–468 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Dobkins, R. Krauzlis and G. Stoner for their comments, and J. Costanza and K. Sevenbergen for technical assistance. This work was supported by NASA grant NAG 2-1168 to J.P. and a Human Frontier Science Program fellowship to A.T. Some of the research reported in this paper was done during tenure by J.P. as a Sloan Visiting Scientist at the Salk Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Perrone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrone, J., Thiele, A. Speed skills: measuring the visual speed analyzing properties of primate MT neurons. Nat Neurosci 4, 526–532 (2001). https://doi.org/10.1038/87480

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87480

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing