Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Musical syntax is processed in Broca's area: an MEG study

Abstract

The present experiment was designed to localize the neural substrates that process music-syntactic incongruities, using magnetoencephalography (MEG). Electrically, such processing has been proposed to be indicated by early right-anterior negativity (ERAN), which is elicited by harmonically inappropriate chords occurring within a major-minor tonal context. In the present experiment, such chords elicited an early effect, taken as the magnetic equivalent of the ERAN (termed mERAN). The source of mERAN activity was localized in Broca's area and its right-hemisphere homologue, areas involved in syntactic analysis during auditory language comprehension. We find that these areas are also responsible for an analysis of incoming harmonic sequences, indicating that these regions process syntactic information that is less language-specific than previously believed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of chord sequences.
Figure 2: Time courses of magnetic field strength.
Figure 3: P2m and mERAN, magnetic field maps.
Figure 4: Mean global field power signals of the mERAN (MGFP averaged over all MEG channels and all subjects).
Figure 5: Grand average dipole solutions for P2m and mERAN.

References

  1. Swain, J. Musical Languages (Norton, UK, 1997).

    Google Scholar 

  2. Sloboda, J. The Musical Mind: The Cognitive Psychology of Music (Oxford Univ. Press, New York, 1985).

    Google Scholar 

  3. Lerdahl, F. & Jackendoff, R. A Generative Theory of Music (MIT Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  4. Raffmann, D. Language, Music, and Mind (MIT Press, Cambridge, Massachusetts, 1993).

    Google Scholar 

  5. Patel, A. D., Gibson, E., Ratner, J., Besson, M. & Holcomb, P. Processing syntactic relations in language and music: an event-related potential study. J. Cogn. Neurosci. 10, 717–733 (1998).

    Article  CAS  Google Scholar 

  6. Koelsch, S., Gunter, T., Friederici, A. D. & Schröger, E. Brain indices of music processing: 'non-musicians' are musical. J. Cogn. Neurosci. 12, 520–541 (2000).

    Article  CAS  Google Scholar 

  7. Krumhansl, C. & Kessler, E. Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol. Rev. 89, 334–368 (1982).

    Article  CAS  Google Scholar 

  8. Bharucha, J. & Krumhansl, C. The representation of harmonic structure in music: hierarchies of stability as a function of context. Cognition 13, 63–102 (1983)

    Article  CAS  Google Scholar 

  9. Bharucha, J. & Stoeckig, K. Reaction time and musical expectancy: priming of chords. J. Exp. Psychol. Hum. Percept. Perform. 12, 403–410 (1986).

    Article  CAS  Google Scholar 

  10. Friederici, A. D., ed. Language Comprehension: A Biological Perspective (Springer, Berlin, 1998).

    Book  Google Scholar 

  11. Bharucha, J. Anchoring effects in music: the resolution of dissonance. Cognit. Psychol. 16, 485–518 (1984).

    Article  Google Scholar 

  12. Bharucha, J. & Stoeckig, K. Priming of chords: spreading activation or overlapping frequency spectra? Percept. Psychophys. 41, 519–524 (1987).

    Article  CAS  Google Scholar 

  13. Clynes, M. in Average Evoked Potentials: Methods, Results and Evaluations (eds. Donchin, E. & Lindsley, D.) 363–374 (US Government Printing Office, Washington, DC, 1969).

    Book  Google Scholar 

  14. Näätänen, R. Attention and Brain Function (Erlbaum, Hillsdale, New Jersey, 1992).

    Google Scholar 

  15. Liegeois-Chauvel, C., Musolino, A., Barier, J., Marquis, P. & Chauvel, P. Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency hypothesis. Electroencephalogr. Clin. Neurophysiol. 92, 204–214 (1994).

    Article  CAS  Google Scholar 

  16. Mäkelä, J., Hämäläinen, M., Hari, R. & McEvoy, L. Whole-head mapping of middle-latency auditory magnetic fields. Electroencephalogr. Clin. Neurophysiol. 92, 414–421 (1994).

    Article  Google Scholar 

  17. Pantev, C. et al. Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr. Clin. Neurophysiol. 94, 26–40 (1995).

    Article  CAS  Google Scholar 

  18. Hari, R., Aittoniemi, M., Jarvinen, M., Katila, T. & Varpula, T. Auditory evoked transient and sustained magnetic fields of the human brain. Exp. Brain Res . 40, 237–240 (1980).

    Article  CAS  Google Scholar 

  19. Pantev, C., Hoke, M., Lütkenhöner, B. & Lehnertz, K. Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science 246, 486–488 (1989).

    Article  CAS  Google Scholar 

  20. Pantev, C. et al. Identification of sources of brain neuronal activity with high spatiotemporal resolution through combination of neuromagnetic source localization (NMSL) and magnetic resonance imaging (MRI). Electroencephalogr. Clin. Neurophysiol. 75, 173–184 (1990).

    Article  CAS  Google Scholar 

  21. Zatorre, R., Evans, A., Meyer, E. & Gjedde, A. Lateralization of phonetic and pitch discrimination in speech processing. Science 256, 846–849 (1992).

    Article  CAS  Google Scholar 

  22. Auzou, P. et al. Topographic EEG activations during timbre and pitch discrimination tasks using musical sounds. Neuropsychologia 33, 25–37 (1995).

    Article  CAS  Google Scholar 

  23. Levänen, S., Ahonen, A., Hari, R., McEvoy, L. & Sams, M. Deviant auditory stimuli activate human left and right auditory cortex differently. Cereb. Cortex 6, 288–296 (1996).

    Article  Google Scholar 

  24. Tervaniemi, M. et al. Lateralized automatic auditory processing of phonetic versus musical information: a PET study. Hum. Brain Mapp. 10, 74–79 (2000).

    Article  CAS  Google Scholar 

  25. Krumhansl, C., Bharucha, J. & Castellano, M. Key distance effects on perceived harmonic structure in music. Percept. Psychophys. 32, 96–108 (1982).

    Article  CAS  Google Scholar 

  26. Krumhansl, C., Bharucha, J. & Kessler, E. Perceived harmonic structure of chords in three related musical keys. J. Exp. Psychol. Hum. Percept. Perform. 8, 24–36 (1982).

    Article  CAS  Google Scholar 

  27. Berent, I. & Perfetti, C. An on-line method in studying music parsing. Cognition 46, 203–222 (1993).

    Article  CAS  Google Scholar 

  28. Alho, K. Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear. 16, 38–51 (1995).

    Article  CAS  Google Scholar 

  29. Rinne, T., Alho, K., Ilmoniemi, R., Virtanen, J. & Näätänen, R. Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage 12, 14–19 (2000).

    Article  CAS  Google Scholar 

  30. Giard, M., Perrin, F. & Pernier, J. Brain generators implicated in processing of auditory stimulus deviance. A topographic ERP study. Psychophysiology 27, 627–640 (1990).

    Article  CAS  Google Scholar 

  31. Alain, C., Woods, D. L. & Knight, R. T. A distributed cortical network for auditory sensory memory in humans. Brain Res. 812, 23–37 (1998).

    Article  CAS  Google Scholar 

  32. Opitz, B., Mecklinger, A., von Cramon, D. Y. & Kruggel, F. Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology 36, 142–147 (1999).

    Article  CAS  Google Scholar 

  33. Caplan, D., Alpert, N. & Waters, G. Effects of syntactic and propositional number on patterns of regional cerebral blood flow. J. Cogn. Neurosci. 10, 541–552 (1998).

    Article  CAS  Google Scholar 

  34. Caplan, D., Alpert, N. & Waters, G. PET-studies of syntactic processing with auditory sentence presentation. Neuroimage 9, 343–351 (1999).

    Article  CAS  Google Scholar 

  35. Caplan, D., Alpert, N., Waters, G. & Olivieri, A. Activation of Broca's area by syntactic processing under condition of concurrent articulation. Hum. Brain Mapp. 9, 65–71 (2000).

    Article  CAS  Google Scholar 

  36. Dapretto, M. & Booheimer, S. Form and content: dissociating syntax and semantics in sentence comprehension. Neuron 24, 427–432 (1999).

    Article  CAS  Google Scholar 

  37. Ni, W. et al. An event-related neuroimaging study distinguishing form and content in sentence processing. J. Cogn. Neurosci. 12, 120–133 (2000).

    Article  CAS  Google Scholar 

  38. Friederici, A., Wang, Y., Herrmann, C., Maess, B. & Oertel, U. Localization of early syntactic processes in frontal and temporal cortical areas: a magnetoencephalographic study. Hum. Brain Mapp. 11, 1–11 (2000).

    Article  CAS  Google Scholar 

  39. Just, M., Carpenter, P., Keller, T., Eddy, W. & Thulborn, K. Brain activation modulated by sentence comprehension. Science 274, 114–116 (1996).

    Article  CAS  Google Scholar 

  40. Meyer, M., Friederici, A. D. & von Cramon, D. Y. Neurocognition of auditory sentence comprehension: event related fMRI reveals sensitivity to syntactic violations and task demands. Cognit. Brain Res. 9, 19–33 (2000).

    Article  CAS  Google Scholar 

  41. Hahne, A. & Friederici, A. D. Electrophysiological evidence for two steps in syntactic analysis: early automatic and late controlled processes. J. Cogn. Neurosci. 11,194–205 (1999).

    Article  CAS  Google Scholar 

  42. Koelsch, S., Schröger, E., Gunter, T. & Friederici, A. D. Differentiating ERAN and MMN: an ERP-study. Neuroreport (in press).

  43. Shaywitz, B. et al. Sex differences in the functional organization of the brain for language. Nature 373, 607–609 (1995).

    Article  CAS  Google Scholar 

  44. Chan, A. S., Ho, Y. C. & Cheung, M. C. Music training improves verbal memory. Nature 396, 128 (1998).

    Article  CAS  Google Scholar 

  45. Douglas, S. & Willatts, P. The relationship between musical ability and literacy skills. J. Res. Reading 17, 99–107 (1994).

    Article  Google Scholar 

  46. Hindemith, P. Unterweisung im Tonsatz, 1. Theoretischer Teil (Schott, Mainz, 1940).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Leibniz Science Prize awarded to A.D. Friederici by the German Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Maess.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maess, B., Koelsch, S., Gunter, T. et al. Musical syntax is processed in Broca's area: an MEG study. Nat Neurosci 4, 540–545 (2001). https://doi.org/10.1038/87502

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing