Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Visualization of changes in presynaptic function during long-term synaptic plasticity

Abstract

Controversy exists regarding the site of modification of synaptic transmission during long-term plasticity in the mammalian hippocampus. Here we used a fluorescent marker of presynaptic activity, FM 1-43, to directly image changes in presynaptic function during both short-term and long-term forms of plasticity at presynaptic boutons of CA3–CA1 excitatory synapses in acute hippocampal slices. We demonstrated enhanced presynaptic function during long-term potentiation (LTP) induced either chemically (with tetraethylammonium), or by high-frequency (200-Hz) electrical stimulation. Both of these forms of LTP required activation of L-type voltage-gated calcium channels and NMDA receptors in the postsynaptic CA1 neuron. These results thus implied that a long-lasting increase in the efficacy of synaptic transmission is likely to depend, at least in part, on enhanced transmitter release from the presynaptic neuron.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FM 1-43 visualization of synaptic boutons in acute hippocampal slices.
Figure 2: The rate of FM 1-43 unloading was proportional to the probability of neurotransmitter release.
Figure 3: Chemically induced LTP increased the rate of FM 1-43 unloading.
Figure 4: Induction of LTP with 50- or 100-Hz tetanic stimulation did not change the rate of FM 1-43 unloading.
Figure 5: Induction of LTP with a strong, 200-Hz tetanic stimulation protocol accelerated the rate of FM 1-43 unloading.
Figure 6: Comparison of FM 1-43 unloading kinetics in individual slices before and after induction of 200 Hz LTP revealed an increase in the rate of puncta unloading without an increase in the number or size of presynaptic boutons.

References

  1. Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711 (2000).

    Article  CAS  Google Scholar 

  2. Milner, B., Squire, L. R. & Kandel, E. R. Cognitive neuroscience and the study of memory. Neuron 20, 445–468 (1998).

    Article  CAS  Google Scholar 

  3. Bear, M. F. Homosynaptic long-term depression: a mechanism for memory? Proc. Natl. Acad. Sci. USA 96, 9457–9458 (1999).

    Article  CAS  Google Scholar 

  4. Kullmann, D. M. & Siegelbaum, S. A. The site of expression of NMDA receptor-dependent LTP: new fuel for an old fire. Neuron 15, 997–1002 (1995).

    Article  CAS  Google Scholar 

  5. Malenka, R. C. & Nicoll, R. A. Long-term potentiation—a decade of progress? Science 285, 1870–1874 (1999).

    Article  CAS  Google Scholar 

  6. Malinow, R., Mainen, Z. F. & Hayashi, Y. LTP mechanisms: from silence to four-lane traffic. Curr. Opin. Neurobiol. 10, 352–357 (2000).

    Article  CAS  Google Scholar 

  7. Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  Google Scholar 

  8. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  Google Scholar 

  9. Carroll, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2, 454–460 (1999).

    Article  CAS  Google Scholar 

  10. Luscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

    Article  CAS  Google Scholar 

  11. Malinow, R. Transmission between pairs of hippocampal slice neurons: quantal levels, oscillations, and LTP. Science 252, 722–724 (1991).

    Article  CAS  Google Scholar 

  12. Stevens, C. F. & Wang, Y. Changes in reliability of synaptic function as a mechanism for plasticity. Nature 371, 704–707 (1994).

    Article  CAS  Google Scholar 

  13. Bolshakov, V. Y. & Siegelbaum, S. A. Regulation of hippocampal transmitter release during development and long-term potentiation. Science 269, 1730–1734 (1995).

    Article  CAS  Google Scholar 

  14. Stricker, C., Cowan, A. I., Field, A. C. & Redman, S. J. Analysis of NMDA-independent long-term potentiation induced at CA3–CA1 synapses in rat hippocampus in vitro. J. Physiol. (Lond.) 520, 513–525 (1999).

    Article  CAS  Google Scholar 

  15. Nicoll, R. A. & Malenka, R. C. Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann. NY Acad. Sci. 868, 515–525 (1999).

    Article  CAS  Google Scholar 

  16. Betz, W. J. & Bewick, G. S. Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255, 200–203 (1992).

    Article  CAS  Google Scholar 

  17. Ryan, T. A. et al. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11, 713–724 (1993).

    Article  CAS  Google Scholar 

  18. Malgaroli, A. et al. Presynaptic component of long-term potentiation visualized at individual hippocampal synapses. Science 268, 1624–1628 (1995).

    Article  CAS  Google Scholar 

  19. Ryan, T. A., Ziv, N. E. & Smith, S. J. Potentiation of evoked vesicle turnover at individually resolved synaptic boutons. Neuron 17, 125–134 (1996).

    Article  CAS  Google Scholar 

  20. Ma, L., Zablow, L., Kandel, E. R. & Siegelbaum, S. A. Cyclic AMP induces functional presynaptic boutons in hippocampal CA3–CA1 neuronal cultures. Nat. Neurosci. 2, 24–30 (1999).

    Article  CAS  Google Scholar 

  21. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  22. Mainen, Z. F. et al. Two-photon imaging in living brain slices. Methods 18, 231–239 (1999).

    Article  CAS  Google Scholar 

  23. Kay, A. R. et al. Imaging synaptic activity in intact brain and slices with FM1-43 in C. elegans, lamprey, and rat. Neuron 24, 809–817 (1999).

    Article  CAS  Google Scholar 

  24. Hiscock, J. J., Murphy, S. & Willoughby, J. O. Confocal microscopic estimation of GABAergic nerve terminals in the central nervous system. J. Neurosci. Methods 95, 1–11 (2000).

    Article  CAS  Google Scholar 

  25. Maletic-Savatic, M., Koothan, T. & Malinow, R. Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part II: mediation by calcium/calmodulin-dependent protein kinase II. J. Neurosci. 18, 6814–6821 (1998).

    Article  CAS  Google Scholar 

  26. Liu, G. & Tsien, R. W. Properties of synaptic transmission at single hippocampal synaptic boutons. Nature 375, 404–408 (1995).

    Article  CAS  Google Scholar 

  27. Stevens, C. F. & Tsujimoto, T. Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc. Natl. Acad. Sci. USA 92, 846–849 (1995).

    Article  CAS  Google Scholar 

  28. Klingauf, J., Kavalali, E. T. & Tsien, R. W. Kinetics and regulation of fast endocytosis at hippocampal synapses. Nature 394, 581–585 (1998).

    Article  CAS  Google Scholar 

  29. Harris, K. M. & Stevens, J. K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    Article  CAS  Google Scholar 

  30. Murthy, V. N., Sejnowski, T. J. & Stevens, C. F. Heterogeneous release properties of visualized individual hippocampal synapses. Neuron 18, 599–612 (1997).

    Article  CAS  Google Scholar 

  31. Rosenmund, C. & Stevens, C. F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207 (1996).

    Article  CAS  Google Scholar 

  32. Ryan, T. A. & Smith, S. J. Vesicle pool mobilization during action potential firing at hippocampal synapses. Neuron 14, 983–989 (1995).

    Article  CAS  Google Scholar 

  33. Dunwiddie, T. V., Hoffer, B. J. & Fredholm, B. B. Alkylxanthines elevate hippocampal excitability. Evidence for a role of endogenous adenosine. Naunyn Schmiedebergs Arch. Pharmacol. 316, 326–330 (1981).

    Article  CAS  Google Scholar 

  34. Cunha, R. A. & Ribeiro, J. A. Purinergic modulation of [(3)H]GABA release from rat hippocampal nerve terminals. Neuropharmacology 39, 1156–1167 (2000).

    Article  CAS  Google Scholar 

  35. Lambert, N. A. & Teyler, T. J. Adenosine depresses excitatory but not fast inhibitory synaptic transmission in area CA1 of the rat hippocampus. Neurosci. Lett. 122, 50–52 (1991).

    Article  CAS  Google Scholar 

  36. Yoon, K. W. & Rothman, S. M. Adenosine inhibits excitatory but not inhibitory synaptic transmission in the hippocampus. J. Neurosci. 11, 1375–1380 (1991).

    Article  CAS  Google Scholar 

  37. Stevens, C. F. & Wang, Y. Facilitation and depression at single central synapses. Neuron 14, 795–802 (1995).

    Article  CAS  Google Scholar 

  38. Aniksztejn, L. & Ben-Ari, Y. Novel form of long-term potentiation produced by a K+ channel blocker in the hippocampus. Nature 349, 67–69 (1991).

    Article  CAS  Google Scholar 

  39. Huang, Y. Y. & Malenka, R. C. Examination of TEA-induced synaptic enhancement in area CA1 of the hippocampus: the role of voltage-dependent Ca2+ channels in the induction of LTP. J. Neurosci. 13, 568–576 (1993).

    Article  CAS  Google Scholar 

  40. Grover, L. M. & Teyler, T. J. Two components of long-term potentiation induced by different patterns of afferent activation. Nature 347, 477–479 (1990).

    Article  CAS  Google Scholar 

  41. Hanse, E. & Gustafsson, B. TEA elicits two distinct potentiations of synaptic transmission in the CA1 region of the hippocampal slice. J. Neurosci. 14, 5028–5034 (1994).

    Article  CAS  Google Scholar 

  42. Harris, E. W., Ganong, A. H. & Cotman, C. W. Long-term potentiation in the hippocampus involves activation of N- methyl-D-aspartate receptors. Brain Res. 323, 132–137 (1984).

    Article  CAS  Google Scholar 

  43. Hawkins, R. D., Son, H. & Arancio, O. Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Prog. Brain Res. 118, 155–172 (1998).

    Article  CAS  Google Scholar 

  44. Choi, S., Klingauf, J. & Tsien, R. W. Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses.' Nat. Neurosci. 3, 330–306 (2000).

    Article  CAS  Google Scholar 

  45. Toni, N., Buchs, P. A., Nikonenko, I., Bron, C. R. & Muller, D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421–425 (1999).

    Article  CAS  Google Scholar 

  46. Bozdagi, O., Shan, W., Tanaka, H., Benson, D. L. & Huntley, G. W. Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28, 245–259 (2000).

    Article  CAS  Google Scholar 

  47. Huang, Y. Y., Nguyen, P. V., Abel, T. & Kandel, E. R. Long-lasting forms of synaptic potentiation in the mammalian hippocampus. Learn. Mem. 3, 74–85 (1996).

    Article  CAS  Google Scholar 

  48. Schuman, E. M. & Madison, D. V. Locally distributed synaptic potentiation in the hippocampus. Science 263, 532–536 (1994).

    Article  CAS  Google Scholar 

  49. Engert, F. & Bonhoeffer, T. Synapse specificity of long-term potentiation breaks down at short distances. Nature 388, 279–284 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Hawkins, E. Kandel, M. Nolan, S. Patterson and V. Unni for comments on the manuscript, and E. Odell for help with artwork. This work was partially supported by a grant from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Siegelbaum.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharenko, S., Zablow, L. & Siegelbaum, S. Visualization of changes in presynaptic function during long-term synaptic plasticity. Nat Neurosci 4, 711–717 (2001). https://doi.org/10.1038/89498

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89498

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing