Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generation of cerebellar granule neurons in vivo by transplantation of BMP-treated neural progenitor cells

Abstract

Cerebellar granule neurons, the most abundant class of CNS neurons, have a critical role in cerebellar function. Granule neurons are generated at the dorsal border of the mesencephalon and metencephalon, the rhombic lip. In the mouse embryo, rhombic lip cells express a number of granule neuron markers, notably the bHLH transcription factor Math1. Dorsal midline cells adjacent to the rhombic lip express Bmp6, Bmp7 and Gdf7, three genes encoding peptide growth factors of the bone morphogenetic protein (BMP) family. These BMPs induced the expression of granule neuron markers in cultured neural tissue. Moreover, BMP-treated neural cells formed mature granule neurons after transplantation into the early postnatal cerebellum, suggesting that BMPs initiate the program of granule cell specification.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Bmps in the mes/met region roof plate and colocalization of Math1 and En1/2 in adjacent rhombic lip cells.
Figure 2: BMP7 induces Math1, En1/2 double-labeled cells in ventral mes/met explants.
Figure 3: Purified recombinant BMP7 induces Math1 expression in ventral mes/met explants.
Figure 4: BMPs induce markers of granule neuron progenitors in ventral mes/met explants.
Figure 5: Generation of granule cells by BMP-treated neural tube explants implanted into a postnatal cerebellum.

Similar content being viewed by others

References

  1. Ito, M. The Cerebellum and Neural Control (Raven, New York, 1984 ).

    Google Scholar 

  2. Gao, J. H. et al. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272, 545–547 (1996).

    Article  CAS  Google Scholar 

  3. Fiez, J. A. Cerebellar contributions to cognition. Neuron 16, 13–15 (1996).

    Article  CAS  Google Scholar 

  4. Eccles, J. C., Ito, M. & Szentágothai, J. The Cerebellum as a Neuronal Machine (Springer, New York, 1967).

    Book  Google Scholar 

  5. Peringa, J., Fung, K. M., Muragaki, Y. & Trojanowski, J. Q. The cellular and molecular biology of medulloblastoma. Curr. Opin. Neurol. 8, 437–440 ( 1995).

    Article  CAS  Google Scholar 

  6. Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 ( 1997).

    Article  CAS  Google Scholar 

  7. Martinez, S. & Alvarado-Mallart, R. M. Rostral cerebellum originates from the caudal portion of the so-called 'mesencephalic' vesicle: a study using chick/quail chimeras. Eur. J. Neurosci. 1, 549–560 (1989).

    Article  Google Scholar 

  8. Altman, J. & Bayer, S. A. The Development of the Cerebellar System: In Relation to its Evolution, Structure, and Functions (CRC, New York, 1997).

    Google Scholar 

  9. Hatten, M. E. & Heintz, N. Mechanisms of neural patterning and specification in the developing cerebellum. Annu. Rev. Neurosci. 18, 385–408 ( 1995).

    Article  CAS  Google Scholar 

  10. Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis. Science 274, 1109–1115 (1996).

    Article  CAS  Google Scholar 

  11. Joyner, A. L. Engrailed, wnt and pax genes regulate midbrain-hindbrain development. Trends Genet. 12, 15–20 ( 1996).

    Article  CAS  Google Scholar 

  12. McMahon, A. P., Joyner, A. L., Bradley, A. & McMahon, J. A. The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum. Cell 69, 581–595 ( 1992).

    Article  CAS  Google Scholar 

  13. Crossley, P. H., Martinez, S. & Martin, G. R. Midbrain development induced by FGF8 in the chick embryo. Nature 380, 66– 68 (1996).

    Article  CAS  Google Scholar 

  14. Hallonet, M. E. & Le Douarin, N. M. Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras. Eur. J. Neurosci. 5, 1145–1155 ( 1993).

    Article  CAS  Google Scholar 

  15. Ryder, E. F. & Cepko, C. L. Migration patterns of clonally related granule cells and their progenitors in the developing chick cerebellum. Neuron 12, 1011–1028 (1994).

    Article  CAS  Google Scholar 

  16. Alder, J., Cho, N. K. & Hatten, M. E. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17, 389–399 (1996).

    Article  CAS  Google Scholar 

  17. Aruga, J. et al. A novel zinc finger protein, Zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J. Neurochem. 63, 1880–1890 (1994).

    Article  CAS  Google Scholar 

  18. Nagai, T. et al. The expression of the mouse Zic1, Zic2, and Zic3 gene suggests an essential role for Zic genes in body pattern formation. Dev. Biol. 182, 299–313 ( 1997).

    Article  CAS  Google Scholar 

  19. Akazawa, C., Ishibashi, M., Shimizu, C., Nakanishi, S. & Kageyama, R. A mammalian helix-loop-helix factor structurally related the the product of the Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J. Biol. Chem. 270, 8730 –8738 (1995).

    Article  CAS  Google Scholar 

  20. Ben-Arie, N. et al. Evolutionary conservation of sequence and expression of the bHLH protein Atonal suggests a conserved role in neurogenesis. Human Mol. Genet. 5, 1207–1216 (1996).

    Article  CAS  Google Scholar 

  21. Helms, A. W. & Johnson, J. E. Progenitors of dorsal commissural interneurons are defined by Math1 expression. Development 125, 919–928 (1998).

    CAS  PubMed  Google Scholar 

  22. Ben-Arie, N. et al. Math1 is essential for genesis of cerebellar granule neurons. Nature 390, 169–172 (1997).

    Article  CAS  Google Scholar 

  23. Liem, K. F. Jr., Tremml, G., Roelink, H. & Jessell, T. M. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979 (1995).

    Article  CAS  Google Scholar 

  24. Liem, K. F. Jr., Tremml, G. & Jessell, T. M. A role for the roof plate and its resident TGFβ-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91, 127–138 ( 1997).

    Article  CAS  Google Scholar 

  25. Arkell, R. & Beddington, R. S. BMP7 influences pattern and growth of the developing hindbrain of mouse embryos. Development 124, 1–12 ( 1997).

    CAS  PubMed  Google Scholar 

  26. Furuta, Y., Piston, D. W. & Hogan, B. L. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124, 2203–2212 (1997).

    CAS  PubMed  Google Scholar 

  27. Lee, K. J., Mendelsohn, M. & Jessell, T. M. Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the spinal cord. Genes Dev. 12, 3394– 3407 (1998).

    Article  CAS  Google Scholar 

  28. Muhr, J., Jessell, T. M. & Edlund, T. Assignment of early caudal identity to neural plate cells by a signal from caudal paraxial mesoderm. Neuron 19, 487–502 (1997).

    Article  CAS  Google Scholar 

  29. Kuhar, S. G. et al. Changing patterns of gene expression define four stages of cerebellar granule neuron differentiation. Development 117, 97–104 (1993).

    CAS  PubMed  Google Scholar 

  30. Gao, W.-Q. & Hatten, M. E. Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum. Development 120, 1059–1070 (1994).

    CAS  PubMed  Google Scholar 

  31. Graham, A., Francis, W. P., Brickell, P. & Lumsden, A. The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372, 684– 686 (1994).

    Article  CAS  Google Scholar 

  32. Lumsden, A., Sprawson, N. & Graham, A. Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113, 1281–1291 (1991).

    CAS  PubMed  Google Scholar 

  33. Tan, S. S. & Morriss-Kay, G. The development and distribution of the cranial neural crest in the rat embryo. Cell Tissue Res. 240, 403–416 ( 1985).

    Article  CAS  Google Scholar 

  34. Chan, W. Y. & Tam, P. P. A morphological and experimental study of the mesencephalic neural crest cells in the mouse embryo using wheat germ agglutinin-gold conjugate as the cell marker. Development 102, 427–442 ( 1988).

    CAS  PubMed  Google Scholar 

  35. Serbedzija, G. N., Bronner-Fraser, M. & Fraser, S. E. Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development 116, 297 –307 (1992).

    CAS  PubMed  Google Scholar 

  36. Osumi-Yamashita, N., Ninomiya, Y., Doi, H. & Eto, K. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev. Biol. 164, 409 –419 (1994).

    Article  CAS  Google Scholar 

  37. Gao, W.-Q., Heintz, N. & Hatten, M. E. Cerebellar granule cell neurogenesis is regulated by cell-cell interactions in vitro. Neuron 6, 705–715 (1991).

    Article  CAS  Google Scholar 

  38. Smeyne, R. J. et al. Local control of granule cell generation by cerebellar Purkinje cells. Mol. Cell. Neurosci. 6, 230– 251 (1995).

    Article  CAS  Google Scholar 

  39. Goldowitz, D. & Hamre, K. The cells and molecules that make a cerebellum. Trends Neurosci. 21, 375– 382 (1998).

    Article  CAS  Google Scholar 

  40. Wechsler-Reya, R. & Scott, M. P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103–114 ( 1999).

    Article  CAS  Google Scholar 

  41. Shah, N. M., Groves, A. K. & Anderson, D. J. Alternative neural crest cell fates are instructively promoted by TGFβ superfamily members. Cell 85, 331–343 (1996).

    Article  CAS  Google Scholar 

  42. Gross, R. E. et al. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606 (1996).

    Article  CAS  Google Scholar 

  43. Davis, C. A., Holmyard, D. P., Millen, K. J. & Joyner, A. L. Examining pattern formation in mouse, chicken and frog embryos with an En-specific antiserum. Development 111, 287– 298 (1991).

    CAS  PubMed  Google Scholar 

  44. Roelink, H. & Nusse, R. Expression of two members of the Wnt family during mouse development: restricted temporal and spatial patterns in the developing neural tube. Genes Dev. 5, 381–388 (1991).

    Article  CAS  Google Scholar 

  45. Parr, B. A., Shea, M. J., Vassileva, G. & McMahon, A. P. Mouse Wnt genes exhibit discrete domains of expression in its early embryonic CNS and limb buds. Development 119, 247– 261 (1993).

    CAS  PubMed  Google Scholar 

  46. Schaeren-Wiemers, N. & Gerfin-Moser, A. A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431– 440 (1993).

    Article  CAS  Google Scholar 

  47. Wilson, P. A. & Hemmati-Brivanlou, A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376, 331–333 (1995).

    Article  CAS  Google Scholar 

  48. Yamada, T., Pfaff, S. L., Edlund, T. & Jessell, T. M. Control of cell pattern in the neural tube: motor neuron induction by diffusible factors from notochord and floor plate. Cell 73, 673–686 (1993).

    Article  CAS  Google Scholar 

  49. Gao, W.-Q. & Hatten, M. E. Neuronal differentiation rescued by implantation of weaver granule cell precursors into wild-type cerebellar cortex. Science 260, 367– 369 (1993).

    Article  CAS  Google Scholar 

  50. Arnold, D. B. & Heintz, N. A calcium responsive element that regulates expression of two calcium binding proteins in Purkinje cells. Proc. Natl. Acad. Sci. USA 94, 8842– 8847 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Johnson for the Math1 in situ probe and antibody, to K. Lyons and E. Robertson for the Bmp6 and Bmp7 probes, to J. Dodd and M. Placzek for the recombinant BMP-7, to P. Salinas for the Wnt3a probe, to J. Aruga for the Zic1 and Zic2 probes and to A. Joyner for the En antibody. Christine Gallagher provided expert technical assistance. Rupal Bhatt provided the image of a granule cell visualized using the gene gun. We thank J. Millonig and R. Wingate for discussions. This work was supported by Program Project PHS NS30532-05 (M.E.H. and T.M.J.), the Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation Fellowship, DRG-1342 (J.A.) and HHMI-Life Sciences Research Fellowship (K.L.). T.M.J. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary E. Hatten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alder, J., Lee, K., Jessell, T. et al. Generation of cerebellar granule neurons in vivo by transplantation of BMP-treated neural progenitor cells. Nat Neurosci 2, 535–540 (1999). https://doi.org/10.1038/9189

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing