Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neuroprotective potential of pleiotrophin overexpression in the striatonigral pathway compared with overexpression in both the striatonigral and nigrostriatal pathways

Abstract

Intrastriatal injection of recombinant adeno-associated viral vector serotype 2/1 (rAAV2/1) to overexpress the neurotrophic factor pleiotrophin (PTN) provides neuroprotection for tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc), increases THir neurite density in the striatum (ST) and reverses functional deficits in forepaw use following 6-hydroxydopamine (6-OHDA) toxic insult. Glial cell line-derived neurotrophic factor (GDNF) gene transfer studies suggest that optimal neuroprotection is dependent on the site of nigrostriatal overexpression. The present study was conducted to determine whether enhanced neuroprotection could be accomplished via simultaneous rAAV2/1 PTN injections into the ST and SN compared with ST injections alone. Rats were unilaterally injected in the ST alone or injected in both the ST and SN with rAAV2/1 expressing either PTN or control vector. Four weeks later, all rats received intrastriatal injections of 6-OHDA. Rats were euthanized 6 or 16 weeks relative to 6-OHDA injection. A novel selective total enumeration method to estimate nigral THir neuron survival was validated to maintain the accuracy of stereological assessment. Long-term nigrostriatal neuroprotection and functional benefits were only observed in rats in which rAAV2/1 PTN was injected into the ST alone. Results suggest that superior preservation of the nigrostriatal system is provided by PTN overexpression delivered to the ST and restricted to the ST and SN pars reticulata and is not improved with overexpression of PTN within SNpc neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Marks Jr WJ, Bartus RT, Siffert J, Davis CS, Lozano A, Boulis N et al. Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial. Lancet Neurol 2010; 9: 1164–1172.

    Article  CAS  Google Scholar 

  2. Marks Jr WJ, Ostrem JL, Verhagen L, Starr PA, Larson PS, Bakay RA et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 2008; 7: 400–408.

    Article  Google Scholar 

  3. Ceregene. Ceregene reports data from Parkinson's disease Phase 2b Study [press release]. Retrived fromhttp://www.ceregene.com/press_041913.asp, 2013.

  4. NINDS. AAV2-GDNF for Advanced Parkinson's Disease. 2013.

  5. Gasmi M, Brandon EP, Herzog CD, Wilson A, Bishop KM, Hofer EK et al. AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of CERE-120 for Parkinson’s disease. Neurobiol Dis 2007; 27: 67–76.

    Article  CAS  Google Scholar 

  6. Gasmi M, Herzog CD, Brandon EP, Cunningham JJ, Ramirez GA, Ketchum ET et al. Striatal delivery of neurturin by CERE-120, an AAV2 vector for the treatment of dopaminergic neuron degeneration in Parkinson's disease. Mol Ther 2007; 15: 62–68.

    Article  CAS  Google Scholar 

  7. Herzog CD, Dass B, Holden JE, Stansell 3rd J, Gasmi M, Tuszynski MH et al. Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov Disord 2007; 22: 1124–1132.

    Article  Google Scholar 

  8. Eslamboli A, Georgievska B, Ridley RM, Baker HF, Muzyczka N, Burger C et al. Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson's disease. J Neurosci 2005; 25: 769–777.

    Article  CAS  Google Scholar 

  9. Kirik D, Rosenblad C, Bjorklund A . Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor. Eur J Neurosci 2000; 12: 3871–3882.

    Article  CAS  Google Scholar 

  10. Kirik D, Rosenblad C, Bjorklund A, Mandel RJ . Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson's model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 2000; 20: 4686–4700.

    Article  CAS  Google Scholar 

  11. Rosenblad C, Kirik D, Bjorklund A . Sequential administration of GDNF into the substantia nigra and striatum promotes dopamine neuron survival and axonal sprouting but not striatal reinnervation or functional recovery in the partial 6-OHDA lesion model. Exp Neurol 2000; 161: 503–516.

    Article  CAS  Google Scholar 

  12. Bartus RT . Translating the therapeutic potential of neurotrophic factors to clinical ‘proof of concept’: a personal saga achieving a career-long quest. Neurobiol Dis 2012; 48: 153–178.

    Article  CAS  Google Scholar 

  13. Herzog CD, Brown L, Kruegel BR, Wilson A, Tansey MG, Gage FH et al. Enhanced neurotrophic distribution, cell signaling and neuroprotection following substantia nigral versus striatal delivery of AAV2-NRTN (CERE-120). Neurobiol Dis 2013; 58: 38–48.

    Article  CAS  Google Scholar 

  14. Hida H, Jung CG, Wu CZ, Kim HJ, Kodama Y, Masuda T et al. Pleiotrophin exhibits a trophic effect on survival of dopaminergic neurons in vitro. Eur J Neurosci 2003; 17: 2127–2134.

    Article  Google Scholar 

  15. Marchionini D, Lehrmann E, Chu Y, He B, Sortwell C, Becker K et al. Role of heparin binding growth factors in nigrostriatal dopamine system development and Parkinson’s disease. Brain Res 2007; 1147: 77–88.

    Article  CAS  Google Scholar 

  16. Gombash SE, Lipton JW, Collier TJ, Madhavan L, Steece-Collier K, Cole-Strauss A et al. Striatal pleiotrophin overexpression provides functional and morphological neuroprotection in the 6-hydroxydopamine model. Mol Ther 2012; 20: 544–554.

    Article  CAS  Google Scholar 

  17. Spieles-Engemann AL, Behbehani MM, Collier TJ, Wohlgenant SL, Steece-Collier K, Paumier K et al. Stimulation of the rat subthalamic nucleus is neuroprotective following significant nigral dopamine neuron loss. Neurobiol Dis 2010; 39: 105–115.

    Article  CAS  Google Scholar 

  18. Taravini IR, Chertoff M, Cafferata EG, Courty J, Murer MG, Pitossi FJ et al. Pleiotrophin over-expression provides trophic support to dopaminergic neurons in parkinsonian rats. Mol Neurodegener 2011; 6: 40.

    Article  Google Scholar 

  19. Ferrario JE, Rojas-Mayorquin AE, Saldana-Ortega M, Salum C, Gomes MZ, Hunot S et al. Pleiotrophin receptor RPTP-zeta/beta expression is up-regulated by L-DOPA in striatal medium spiny neurons of parkinsonian rats. J Neurochem 2008; 107: 443–452.

    Article  CAS  Google Scholar 

  20. Mi R, Chen W, Hoke A . Pleiotrophin is a neurotrophic factor for spinal motor neurons. Proc Natl Acad Sci USA 2007; 104: 4664–4669.

    Article  CAS  Google Scholar 

  21. Hsueh YP, Sheng M . Regulated expression and subcellular localization of syndecan heparan sulfate proteoglycans and the syndecan-binding protein CASK/LIN-2 during rat brain development. J Neurosci 1999; 19: 7415–7425.

    Article  CAS  Google Scholar 

  22. Rohrbough J, Broadie K . Anterograde Jelly belly ligand to Alk receptor signaling at developing synapses is regulated by Mind the gap. Development 2010; 137: 3523–3533.

    Article  CAS  Google Scholar 

  23. Hayashi N, Oohira A, Miyata S . Synaptic localization of receptor-type protein tyrosine phosphatase zeta/beta in the cerebral and hippocampal neurons of adult rats. Brain Res 2005; 1050: 163–169.

    Article  CAS  Google Scholar 

  24. Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malerczyk C et al. Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem 2001; 276: 16772–16779.

    Article  CAS  Google Scholar 

  25. Powers C, Aigner A, Stoica GE, McDonnell K, Wellstein A . Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J Biol Chem 2002; 277: 14153–14158.

    Article  CAS  Google Scholar 

  26. Bowden ET, Stoica GE, Wellstein A . Anti-apoptotic signaling of pleiotrophin through its receptor, anaplastic lymphoma kinase. J Biol Chem 2002; 277: 35862–35868.

    Article  CAS  Google Scholar 

  27. Kinnunen T, Raulo E, Nolo R, Maccarana M, Lindahl U, Rauvala H . Neurite outgrowth in brain neurons induced by heparin-binding growth-associated molecule (HB-GAM) depends on the specific interaction of HB-GAM with heparan sulfate at the cell surface. J Biol Chem 1996; 271: 2243–2248.

    Article  CAS  Google Scholar 

  28. Rauvala H, Huttunen HJ, Fages C, Kaksonen M, Kinnunen T, Imai S et al. Heparin-binding proteins HB-GAM (pleiotrophin) and amphoterin in the regulation of cell motility. Matrix Biol 2000; 19: 377–387.

    Article  CAS  Google Scholar 

  29. Maeda N, He J, Yajima Y, Mikami T, Sugahara K, Yabe T . Heterogeneity of the chondroitin sulfate portion of phosphacan/6B4 proteoglycan regulates its binding affinity for pleiotrophin/heparin binding growth-associated molecule. J Biol Chem 2003; 278: 35805–35811.

    Article  CAS  Google Scholar 

  30. Maeda N, Nishiwaki T, Shintani T, Hamanaka H, Noda M . 6B4 proteoglycan/phosphacan, an extracellular variant of receptor-like protein-tyrosine phosphatase zeta/RPTPbeta, binds pleiotrophin/heparin-binding growth-associated molecule (HB-GAM). J Biol Chem 1996; 271: 21446–21452.

    Article  CAS  Google Scholar 

  31. Tsui CC, Pierchala BA . The differential axonal degradation of Ret accounts for cell-type-specific function of glial cell line-derived neurotrophic factor as a retrograde survival factor. J Neurosci 2010; 30: 5149–5158.

    Article  CAS  Google Scholar 

  32. Leitner ML, Molliver DC, Osborne PA, Vejsada R, Golden JP, Lampe PA et al. Analysis of the retrograde transport of glial cell line-derived neurotrophic factor (GDNF), neurturin, and persephin suggests that in vivo signaling for the GDNF family is GFRalpha coreceptor-specific. J Neurosci 1999; 19: 9322–9331.

    Article  CAS  Google Scholar 

  33. Tomac A, Widenfalk J, Lin LF, Kohno T, Ebendal T, Hoffer BJ et al. Retrograde axonal transport of glial cell line-derived neurotrophic factor in the adult nigrostriatal system suggests a trophic role in the adult. Proc Natl Acad Sci USA 1995; 92: 8274–8278.

    Article  CAS  Google Scholar 

  34. Bartus RT, Brown L, Wilson A, Kruegel B, Siffert J, Johnson Jr EM et al. Properly scaled and targeted AAV2-NRTN (neurturin) to the substantia nigra is safe, effective and causes no weight loss: support for nigral targeting in Parkinson’s disease. Neurobiol Dis 2011; 44: 38–52.

    Article  CAS  Google Scholar 

  35. Gasmi M, Brandon EP, Herzog CD, Wilson A, Bishop KM, Hofer EK et al. AAV2-mediated delivery of human neurturin to the rat nigrostriatal system: long-term efficacy and tolerability of CERE-120 for Parkinson’s disease. Neurobiol Dis 2007; 27: 67–76.

    Article  CAS  Google Scholar 

  36. Sun M, Kong L, Wang X, Lu XG, Gao Q, Geller AI . Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson's disease. Brain Res 2005; 1052: 119–129.

    Article  CAS  Google Scholar 

  37. Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 1995; 373: 335–339.

    Article  CAS  Google Scholar 

  38. Mandel RJ, Spratt SK, Snyder RO, Leff SE . Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson's disease in rats. Proc Natl Acad Sci USA 1997; 94: 14083–14088.

    Article  CAS  Google Scholar 

  39. Oiwa Y, Yoshimura R, Nakai K, Itakura T . Dopaminergic neuroprotection and regeneration by neurturin assessed by using behavioral, biochemical and histochemical measurements in a model of progressive Parkinson's disease. Brain Res 2002; 947: 271–283.

    Article  CAS  Google Scholar 

  40. Wang L, Muramatsu S, Lu Y, Ikeguchi K, Fujimoto K, Okada T et al. Delayed delivery of AAV-GDNF prevents nigral neurodegeneration and promotes functional recovery in a rat model of Parkinson's disease. Gene Therapy 2002; 9: 381–389.

    Article  CAS  Google Scholar 

  41. Kozlowski DA, Connor B, Tillerson JL, Schallert T, Bohn MC . Delivery of a GDNF gene into the substantia nigra after a progressive 6-OHDA lesion maintains functional nigrostriatal connections. Exp Neurol 2000; 166: 1–15.

    Article  CAS  Google Scholar 

  42. McGrath J, Lintz E, Hoffer BJ, Gerhardt GA, Quintero EM, Granholm AC . Adeno-associated viral delivery of GDNF promotes recovery of dopaminergic phenotype following a unilateral 6-hydroxydopamine lesion. Cell Transplant 2002; 11: 215–227.

    Article  Google Scholar 

  43. Rosenblad C, Martinez-Serrano A, Bjorklund A . Intrastriatal glial cell line-derived neurotrophic factor promotes sprouting of spared nigrostriatal dopaminergic afferents and induces recovery of function in a rat model of Parkinson’s disease. Neuroscience 1998; 82: 129–137.

    Article  CAS  Google Scholar 

  44. Gorbatyuk OS, Li S, Sullivan LF, Chen W, Kondrikova G, Manfredsson FP et al. The phosphorylation state of Ser-129 in human alpha-synuclein determines neurodegeneration in a rat model of Parkinson disease. Proc Natl Acad Sci USA 2008; 105: 763–768.

    Article  CAS  Google Scholar 

  45. Sanchez-Guajardo V, Febbraro F, Kirik D, Romero-Ramos M . Microglia acquire distinct activation profiles depending on the degree of alpha-synuclein neuropathology in a rAAV based model of Parkinson’s disease. PLoS One 2010; 5: e8784.

    Article  Google Scholar 

  46. Gombash SE, Manfredsson FP, Kemp CJ, Kuhn NC, Fleming SM, Egan AE et al. Morphological and behavioral impact of AAV2/5-mediated overexpression of human wildtype alpha-synuclein in the rat nigrostriatal system. PLoS One 2013; 8: e81426.

    Article  Google Scholar 

  47. Burger C, Nguyen FN, Deng J, Mandel RJ . Systemic mannitol-induced hyperosmolality amplifies rAAV2-mediated striatal transduction to a greater extent than local co-infusion. Mol Ther 2005; 11: 327–331.

    Article  CAS  Google Scholar 

  48. Schallert T . Behavioral tests for preclinical intervention assessment. NeuroRx 2006; 3: 497–504.

    Article  Google Scholar 

  49. Olsson M, Nikkhah G, Bentlage C, Bjorklund A . Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci 1995; 15(Pt 2): 3863–3875.

    Article  CAS  Google Scholar 

  50. Fleming SM, Schallert T, Ciucci MR . Cranial and related sensorimotor impairments in rodent models of Parkinson's disease. Behav Brain Res 2012; 231: 317–322.

    Article  Google Scholar 

  51. Woodlee MT, Kane JR, Chang J, Cormack LK, Schallert T . Enhanced function in the good forelimb of hemi-parkinson rats: compensatory adaptation for contralateral postural instability? Exp Neurol 2008; 211: 511–517.

    Article  Google Scholar 

  52. Schallert T, Upchurch M, Wilcox RE, Vaughn DM . Posture-independent sensorimotor analysis of inter-hemispheric receptor asymmetries in neostriatum. Pharmacol Biochem Behav 1983; 18: 753–759.

    Article  CAS  Google Scholar 

  53. Schallert T, Upchurch M, Lobaugh N, Farrar SB, Spirduso WW, Gilliam P et al. Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol Biochem Behav 1982; 16: 455–462.

    Article  CAS  Google Scholar 

  54. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST . CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 2000; 39: 777–787.

    Article  CAS  Google Scholar 

  55. Robinson TE, Becker JB . The rotational behavior model: asymmetry in the effects of unilateral 6-OHDA lesions of the substantia nigra in rats. Brain Res 1983; 264: 127–131.

    Article  CAS  Google Scholar 

  56. Paxinos G, Watson C . The Rat Brain in Stereotaxic Coordinates, 2nd edn.Academic Press: Sydney, Australia; Orlando, FL, USA, 1986.

    Google Scholar 

Download references

Acknowledgements

This research was supported by NS058682 (to CES), NS076158 (to SEG) and the Morris K. Udall Center of Excellence for Parkinson’s Disease Research at Michigan State University NS058830 (to TJC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C E Sortwell.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gombash, S., Manfredsson, F., Mandel, R. et al. Neuroprotective potential of pleiotrophin overexpression in the striatonigral pathway compared with overexpression in both the striatonigral and nigrostriatal pathways. Gene Ther 21, 682–693 (2014). https://doi.org/10.1038/gt.2014.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.42

This article is cited by

Search

Quick links