Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A comparison of the synaptic proteome in human chronic schizophrenia and rat ketamine psychosis suggest that prohibitin is involved in the synaptic pathology of schizophrenia

Abstract

Many studies in recent years suggest that schizophrenia is a synaptic disease that crucially involves a hypofunction of N-methyl-D-aspartate receptor-mediated signaling. However, at present it is unclear how these pathological processes are reflected in the protein content of the synapse. We have employed two-dimensional gel electrophoresis in conjunction with mass spectrometry to characterize and compare the synaptic proteomes of the human left dorsolateral prefrontal cortex in chronic schizophrenia and of the cerebral cortex of rats treated subchronically with ketamine. We found consistent changes in the synaptic proteomes of human schizophrenics and in rats with induced ketamine psychosis compared to controls. However, commonly regulated proteins between both groups were very limited and only prohibitin was found upregulated in both chronic schizophrenia and the rat ketamine model. Prohibitin, however, could be a new potential marker for the synaptic pathology of schizophrenia and might be causally involved in the disease process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Harrison PJ . The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122: 593–624.

    Article  PubMed  Google Scholar 

  2. Kaufmann WE, Moser HW . Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 2000; 10: 981–991.

    Article  CAS  PubMed  Google Scholar 

  3. Eastwood SL . The synaptic pathology of schizophrenia: is aberrant neurodevelopment and plasticity to blame? Int Rev Neurobiol 2004; 59: 47–72.

    Article  CAS  PubMed  Google Scholar 

  4. Lewis DA, Levitt P . Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002; 25: 409–432.

    Article  CAS  PubMed  Google Scholar 

  5. McGlashan TH, Hoffman RE . Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 2000; 57: 637–648.

    Article  CAS  PubMed  Google Scholar 

  6. Woods BT . Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am J Psychiatry 1998; 155: 1661–1670.

    Article  CAS  PubMed  Google Scholar 

  7. Selemon LD, Mrzljak J, Kleinman JE, Herman MM, Goldman-Rakic PS . Regional specificity in the neuropathologic substrates of schizophrenia: a morphometric analysis of Broca's area 44 and area 9. Arch Gen Psychiatry 2003; 60: 69–77.

    Article  PubMed  Google Scholar 

  8. Black JE, Kodish IM, Grossman AW, Klintsova AY, Orlovskaya D, Vostrikov V et al. Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am J Psychiatry 2004; 161: 742–744.

    Article  PubMed  Google Scholar 

  9. Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM et al. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 1998; 65: 446–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Glantz LA, Gilmore JH, Lieberman JA, Jarskog LF . Apoptotic mechanisms and the synaptic pathology of schizophrenia. Schizophr Res 2006; 81: 47–63.

    Article  PubMed  Google Scholar 

  11. Glantz LA, Lewis DA . Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000; 57: 65–73.

    Article  CAS  PubMed  Google Scholar 

  12. Hill SK, Ragland JD, Gur RC, Gur RE . Neuropsychological differences among empirically derived clinical subtypes of schizophrenia. Neuropsychology 2001; 15: 492–501.

    Article  CAS  PubMed  Google Scholar 

  13. Kolluri N, Sun Z, Sampson AR, Lewis DA . Lamina-specific reductions in dendritic spine density in the prefrontal cortex of subjects with schizophrenia. Am J Psychiatry 2005; 162: 1200–1202.

    Article  PubMed  Google Scholar 

  14. Kolomeets NS, Orlovskaya DD, Rachmanova VI, Uranova NA . Ultrastructural alterations in hippocampal mossy fiber synapses in schizophrenia: a postmortem morphometric study. Synapse 2005; 57: 47–55.

    Article  CAS  PubMed  Google Scholar 

  15. Stephan KE, Baldeweg T, Friston KJ . Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry 2006; 59: 929–939.

    Article  CAS  PubMed  Google Scholar 

  16. Cullen TJ, Walker MA, Eastwood SL, Esiri MM, Harrison PJ, Crow TJ . Anomalies of asymmetry of pyramidal cell density and structure in dorsolateral prefrontal cortex in schizophrenia. Br J Psychiatry 2006; 188: 26–31.

    Article  PubMed  Google Scholar 

  17. Selemon LD, Goldman-Rakic PS . The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999; 45: 17–25.

    Article  CAS  PubMed  Google Scholar 

  18. Selemon LD . Regionally diverse cortical pathology in schizophrenia: clues to the etiology of the disease. Schizophr Bull 2001; 27: 349–377.

    Article  CAS  PubMed  Google Scholar 

  19. Moghaddam B . Bringing order to the glutamate chaos in schizophrenia. Neuron 2003; 40: 881–884.

    Article  CAS  PubMed  Google Scholar 

  20. Tsai G, Coyle JT . Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol 2002; 42: 165–179.

    Article  CAS  PubMed  Google Scholar 

  21. Kennedy MB, Beale HC, Carlisle HJ, Washburn LR . Integration of biochemical signalling in spines. Nat Rev Neurosci 2005; 6: 423–434.

    Article  CAS  PubMed  Google Scholar 

  22. Okabe S . Molecular anatomy of the postsynaptic density. Mol Cell Neurosci 2007; 34: 503–518.

    Article  CAS  PubMed  Google Scholar 

  23. Kristiansen LV, Huerta I, Beneyto M, Meador-Woodruff JH . NMDA receptors and schizophrenia. Curr Opin Pharmacol 2007; 7: 48–55.

    Article  CAS  PubMed  Google Scholar 

  24. Bernstein HG, Becker A, Keilhoff G, Spilker C, Gorczyca WA, Braunewell KH et al. Brain region-specific changes in the expression of calcium sensor proteins after repeated applications of ketamine to rats. Neurosci Lett 2003; 339: 95–98.

    Article  CAS  PubMed  Google Scholar 

  25. Keilhoff G, Becker A, Grecksch G, Wolf G, Bernstein HG . Repeated application of ketamine to rats induces changes in the hippocampal expression of parvalbumin, neuronal nitric oxide synthase and cFOS similar to those found in human schizophrenia. Neuroscience 2004; 126: 591–598.

    Article  CAS  PubMed  Google Scholar 

  26. Dean B, Crook JM, Pavey G, Opeskin K, Copolov DL . Muscarinic 1 and 2 receptor mRNA in the human caudate-putamen: no change in m1 mRNA in schizophrenia. Mol Psychiatry 2000; 5: 203–207.

    Article  CAS  PubMed  Google Scholar 

  27. Yamada S, Esaki Y, Mizutani T . Intracranial cavity volume can be accurately estimated from the weights of intracranial contents: confirmation by the dental plaster casting method. Neuropathol Appl Neurobiol 1999; 25: 341–344.

    Article  CAS  PubMed  Google Scholar 

  28. Bernstein HG, Sahin J, Smalla KH, Gundelfinger ED, Bogerts B, Kreutz MR . A reduced number of cortical neurons show increased caldendrin protein levels in chronic schizophrenia. Schizophr Res 2007; 96: 246–256.

    Article  PubMed  Google Scholar 

  29. Danos P, Baumann B, Kramer A, Bernstein HG, Stauch R, Krell D et al. Volumes of association thalamic nuclei in schizophrenia: a postmortem study. Schizophr Res 2003; 60: 141–155.

    Article  PubMed  Google Scholar 

  30. Smalla KH, Matthies H, Langnase K, Shabir S, Bockers TM, Wyneken U et al. The synaptic glycoprotein neuroplastin is involved in long-term potentiation at hippocampal CA1 synapses. Proc Natl Acad Sci USA 2000; 97: 4327–4332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van den Oever MC, Spijker S, Li KW, Jimenez CR, Koya E, Van der Schors RC et al. A proteomics approach to identify long-term molecular changes in rat medial prefrontal cortex resulting from sucrose self-administration. J Proteome Res 2006; 5: 147–154.

    Article  CAS  PubMed  Google Scholar 

  32. Li KW, Hornshaw MP, Van Der Schors RC, Watson R, Tate S, Casetta B et al. Proteomics analysis of rat brain postsynaptic density. Implications of the diverse protein functional groups for the integration of synaptic physiology. J Biol Chem 2004; 279: 987–1002.

    Article  CAS  PubMed  Google Scholar 

  33. Bernstein HG, Smalla KH, Bogerts B, Gordon-Weeks PR, Beesley PW, Gundelfinger ED et al. The immunolocalization of the synaptic glycoprotein neuroplastin differs substantially between the human and the rodent brain. Brain Res 2007; 1134: 107–112.

    Article  CAS  PubMed  Google Scholar 

  34. Smalla KH, Seidenbecher CI, Tischmeyer W, Schicknick H, Wyneken U, Bockers TM et al. Kainate-induced epileptic seizures induce a recruitment of caldendrin to the postsynaptic density in rat brain. Brain Res Mol Brain Res 2003; 116: 159–162.

    Article  CAS  PubMed  Google Scholar 

  35. Wendholt D, Spilker C, Schmitt A, Dolnik A, Smalla KH, Proepper C et al. ProSAP-interacting protein 1 (ProSAPiP1), a novel protein of the postsynaptic density that links the spine-associated Rap-Gap (SPAR) to the scaffolding protein ProSAP2/Shank3. J Biol Chem 2006; 281: 13805–13816.

    Article  CAS  PubMed  Google Scholar 

  36. tom Dieck S, Sanmarti-Vila L, Langnaese K, Richter K, Kindler S, Soyke A et al. Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J Cell Biol 1998; 142: 499–509.

    Article  CAS  PubMed  Google Scholar 

  37. Dieterich DC, Karpova A, Mikhaylova M, Zdobnova I, Koenig I, Landwehr M et al. Caldendrin–Jacob: a protein liaison that couples NMDA receptor signalling to the nucleus. PLoS Biol 2008; 6: 286–306.

    Article  CAS  Google Scholar 

  38. Spilker C, Acuna Sanhueza GA, Bockers TM, Kreutz MR, Gundelfinger ED . SPAR2, a novel SPAR-related protein with GAP activity for Rap1 and Rap2. J Neurochem 2008; 104: 187–201.

    CAS  PubMed  Google Scholar 

  39. Bernstein HG, Stanarius A, Baumann B, Henning H, Krell D, Danos P et al. Nitric oxide synthase-containing neurons in the human hypothalamus: reduced number of immunoreactive cells in the paraventricular nucleus of depressive patients and schizophrenics. Neuroscience 1998; 83: 867–875.

    Article  CAS  PubMed  Google Scholar 

  40. Bernstein HG, Baumann B, Danos P, Diekmann S, Bogerts B, Gundelfinger ED et al. Regional and cellular distribution of neural visinin-like protein immunoreactivities (VILIP-1 and VILIP-3) in human brain. J Neurocytol 1999; 28: 655–662.

    Article  CAS  PubMed  Google Scholar 

  41. Bernstein HG, Seidenbecher CI, Smalla KH, Gundelfinger ED, Bogerts B, Kreutz MR . Distribution and cellular localization of caldendrin immunoreactivity in adult human forebrain. J Histochem Cytochem 2003; 51: 1109–1112.

    Article  CAS  PubMed  Google Scholar 

  42. Hsu SM, Soban E . Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry. J Histochem Cytochem 1982; 30: 1079–1082.

    Article  CAS  PubMed  Google Scholar 

  43. Cheng D, Hoogenraad CC, Rush J, Ramm E, Schlager MA, Duong DM et al. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteomics 2006; 5: 1158–1170.

    Article  CAS  PubMed  Google Scholar 

  44. Collins MO, Husi H, Yu L, Brandon JM, Anderson CN, Blackstock WP et al. Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 2006; 97: 16–23.

    Article  CAS  PubMed  Google Scholar 

  45. Dosemeci A, Tao-Cheng JH, Vinade L, Jaffe H . Preparation of postsynaptic density fraction from hippocampal slices and proteomic analysis. Biochem Biophys Res Commun 2006; 339: 687–694.

    Article  CAS  PubMed  Google Scholar 

  46. Jordan BA, Fernholz BD, Boussac M, Xu C, Grigorean G, Ziff EB et al. Identification and verification of novel rodent postsynaptic density proteins. Mol Cell Proteomics 2004; 3: 857–871.

    Article  CAS  PubMed  Google Scholar 

  47. Li K, Hornshaw MP, van Minnen J, Smalla KH, Gundelfinger ED, Smit AB . Organelle proteomics of rat synaptic proteins: correlation-profiling by isotope-coded affinity tagging in conjunction with liquid chromatography-tandem mass spectrometry to reveal post-synaptic density specific proteins. J Proteome Res 2005; 4: 725–733.

    Article  CAS  PubMed  Google Scholar 

  48. Peng J, Kim MJ, Cheng D, Duong DM, Gygi SP, Sheng M . Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem 2004; 279: 21003–21011.

    Article  CAS  PubMed  Google Scholar 

  49. Trinidad JC, Specht CG, Thalhammer A, Schoepfer R, Burlingame AL . Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Mol Cell Proteomics 2006; 5: 914–922.

    Article  CAS  PubMed  Google Scholar 

  50. Yoshimura Y, Yamauchi Y, Shinkawa T, Taoka M, Donai H, Takahashi N et al. Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography-tandem mass spectrometry. J Neurochem 2004; 88: 759–768.

    Article  CAS  PubMed  Google Scholar 

  51. Alexander-Kaufman K, James G, Sheedy D, Harper C, Matsumoto I . Differential protein expression in the prefrontal white matter of human alcoholics: a proteomics study. Mol Psychiatry 2006; 11: 56–65.

    Article  CAS  PubMed  Google Scholar 

  52. Mishra S, Murphy LC, Nyomba BL, Murphy LJ . Prohibitin: a potential target for new therapeutics. Trends Mol Med 2005; 11: 192–197.

    Article  CAS  PubMed  Google Scholar 

  53. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004; 9: 684–697.

    Article  CAS  PubMed  Google Scholar 

  54. Kalus P, Muller TJ, Zuschratter W, Senitz D . The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients. Neuroreport 2000; 11: 3621–3625.

    Article  CAS  PubMed  Google Scholar 

  55. Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC, Halpern E et al. Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biol Psychiatry 2000; 48: 99–109.

    Article  CAS  PubMed  Google Scholar 

  56. Meyer-Lindenberg AS, Olsen RK, Kohn PD, Brown T, Egan MF, Weinberger DR et al. Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch Gen Psychiatry 2005; 62: 379–386.

    Article  PubMed  Google Scholar 

  57. Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D . Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 2006; 6: 3414–3425.

    Article  CAS  PubMed  Google Scholar 

  58. Clark D, Dedova I, Cordwell S, Matsumoto I . A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol Psychiatry 2006; 11: 459–470.

    Article  CAS  PubMed  Google Scholar 

  59. Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF, et al, The Stanley Neuropathology Consortium. Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. Mol Psychiatry 2000; 5: 142–149.

    Article  CAS  PubMed  Google Scholar 

  60. Mei J, Kolbin D, Kao HT, Porton B . Protein expression profiling of postmortem brain in schizophrenia. Schizophr Res 2006; 84: 204–213.

    Article  PubMed  Google Scholar 

  61. Novikova SI, He F, Cutrufello NJ, Lidow MS . Identification of protein biomarkers for schizophrenia and bipolar disorder in the postmortem prefrontal cortex using SELDI-TOF-MS ProteinChip profiling combined with MALDI-TOF-PSD-MS analysis. Neurobiol Dis 2006; 23: 61–76.

    Article  CAS  PubMed  Google Scholar 

  62. Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM et al. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry, published online 16 October 2007; e-pub ahead of print.

  63. Paulson L, Martin P, Persson A, Nilsson CL, Ljung E, Westman-Brinkmalm A et al. Comparative genome- and proteome analysis of cerebral cortex from MK-801-treated rats. J Neurosci Res 2003; 71: 526–533.

    Article  CAS  PubMed  Google Scholar 

  64. Arion D, Unger T, Lewis DA, Levitt P, Mirnics K . Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biol Psychiatry 2007; 63: 711–721.

    Article  CAS  Google Scholar 

  65. Dean B, Keriakous D, Scarr E, Thomas EA . Gene expression profiling in Brodmann's area 46 from subjects with schizophrenia. Aust N Z J Psychiatry 2007; 41: 308–320.

    Article  PubMed  Google Scholar 

  66. DeLisi LE, Fleischhaker W . Schizophrenia research in the era of the genome. Curr Opin Psychiatry 2007; 20: 109–110.

    Article  PubMed  Google Scholar 

  67. Saito A, Fujikura-Ouchi Y, Kuramasu A, Shimoda K, Akiyama K, Matsuoka H et al. Association study of putative promoter polymorphisms in the neuroplastin gene and schizophrenia. Neurosci Lett 2007; 411: 168–173.

    Article  CAS  PubMed  Google Scholar 

  68. Sivagnanasundaram S, Fletcher D, Hubank M, Illingworth E, Skuse D, Scambler P . Differential gene expression in the hippocampus of the Df1/+ mice: a model for 22q11.2 deletion syndrome and schizophrenia. Brain Res 2007; 1139: 48–59.

    Article  CAS  PubMed  Google Scholar 

  69. Eastwood SL, Harrison PJ . Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs. Mol Psychiatry 2000; 5: 425–432.

    Article  CAS  PubMed  Google Scholar 

  70. Harrison PJ, Eastwood SL . Preferential involvement of excitatory neurons in medial temporal lobe in schizophrenia. Lancet 1998; 352: 1669–1673.

    Article  CAS  PubMed  Google Scholar 

  71. Di Maria E, Gulli R, Begni S, De Luca A, Bignotti S, Pasini A et al. Variations in the NMDA receptor subunit 2B gene (GRIN2B) and schizophrenia: a case-control study. Am J Med Genet B Neuropsychiatr Genet 2004; 128: 27–29.

    Article  Google Scholar 

  72. Iasevoli F, Polese D, Ambesi-Impiombato A, Muscettola G, de Bartolomeis A . Ketamine-related expression of glutamatergic postsynaptic density genes: possible implications in psychosis. Neurosci Lett 2007; 416: 1–5.

    Article  CAS  PubMed  Google Scholar 

  73. Malhotra AK, Breier A, Goldman D, Picken L, Pickar D . The apolipoprotein E epsilon 4 allele is associated with blunting of ketamine-induced psychosis in schizophrenia. A preliminary report. Neuropsychopharmacology 1998; 19: 445–448.

    Article  CAS  PubMed  Google Scholar 

  74. Li KW, Miller S, Klychnikov O, Loos M, Stahl-Zeng J, Spijker S et al. Quantitative proteomics and protein network analysis of hippocampal synapses of CaMKIIalpha mutant mice. J Proteome Res 2007; 6: 3127–3133.

    Article  CAS  PubMed  Google Scholar 

  75. Toyooka K, Iritani S, Makifuchi T, Shirakawa O, Kitamura N, Maeda K et al. Selective reduction of a PDZ protein, SAP-97, in the prefrontal cortex of patients with chronic schizophrenia. J Neurochem 2002; 83: 797–806.

    Article  CAS  PubMed  Google Scholar 

  76. Sutton MA, Schuman EM . Dendritic protein synthesis, synaptic plasticity, and memory. Cell 2006; 127: 49–58.

    Article  CAS  PubMed  Google Scholar 

  77. Carboni L, Vighini M, Piubelli C, Castelletti L, Milli A, Domenici E . Proteomic analysis of rat hippocampus and frontal cortex after chronic treatment with fluoxetine or putative novel antidepressants: CRF1 and NK1 receptor antagonists. Eur Neuropsychopharmacol 2006; 16: 521–537.

    Article  CAS  PubMed  Google Scholar 

  78. Vercauteren FG, Bergeron JJ, Vandesande F, Arckens L, Quirion R . Proteomic approaches in brain research and neuropharmacology. Eur J Pharmacol 2004; 500: 385–398.

    Article  CAS  PubMed  Google Scholar 

  79. Yang MS, Yu L, Guo TW, Zhu SM, Liu HJ, Shi YY et al. Evidence for association between single nucleotide polymorphisms in T complex protein 1 gene and schizophrenia in the Chinese Han population. J Med Genet 2004; 41: e63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. La Y, Wan C, Zhu H, Yang Y, Chen Y, Pan Y et al. Hippocampus protein profiling reveals aberration of malate dehydrogenase in chlorpromazine/clozapine treated rats. Neurosci Lett 2006; 408: 29–34.

    Article  CAS  PubMed  Google Scholar 

  81. Stone WS, Faraone SV, Su J, Tarbox SI, Van Eerdewegh P, Tsuang MT . Evidence for linkage between regulatory enzymes in glycolysis and schizophrenia in a multiplex sample. Am J Med Genet B Neuropsychiatr Genet 2004; 127: 5–10.

    Article  Google Scholar 

  82. Burbaeva G, Savushkina OK, Boksha IS . Creatine kinase BB in brain in schizophrenia. World J Biol Psychiatry 2003; 4: 177–183.

    Article  PubMed  Google Scholar 

  83. Kunugi H, Kato T, Fukuda R, Tatsumi M, Sakai T, Nanko S . Association study of C825T polymorphism of the G-protein b3 subunit gene with schizophrenia and mood disorders. J Neural Transm 2002; 109: 213–218.

    Article  CAS  PubMed  Google Scholar 

  84. Minoretti P, Politi P, Coen E, Di Vito C, Bertona M, Bianchi M et al. The T393C polymorphism of the GNAS1 gene is associated with deficit schizophrenia in an Italian population sample. Neurosci Lett 2006; 397: 159–163.

    Article  CAS  PubMed  Google Scholar 

  85. Tani M, Mui K, Minami Y, Kiriike N . Association of a GTP-binding protein Go alpha subunit mutation with schizophrenia. Mol Psychiatry 2001; 6: 359.

    Article  CAS  PubMed  Google Scholar 

  86. Ventriglia M, Bocchio Chiavetto L, Bonvicini C, Tura GB, Bignotti S, Racagni G et al. Allelic variation in the human prodynorphin gene promoter and schizophrenia. Neuropsychobiology 2002; 46: 17–21.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang CS, Tan Z, Lu L, Wu SN, He Y, Gu NF et al. Polymorphism of Prodynorphin promoter is associated with schizophrenia in Chinese population. Acta Pharmacol Sin 2004; 25: 1022–1026.

    CAS  PubMed  Google Scholar 

  88. Li Z, Okamoto K, Hayashi Y, Sheng M . The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 2004; 119: 873–887.

    Article  CAS  PubMed  Google Scholar 

  89. Nijtmans LG, de Jong L, Artal Sanz M, Coates PJ, Berden JA, Back JW et al. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J 2000; 19: 2444–2451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rajalingam K, Wunder C, Brinkmann V, Churin Y, Hekman M, Sievers C et al. Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat Cell Biol 2005; 7: 837–843.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the BMBF (01GZ0307/ 01GA0505), DFG (SFB 779 TP B8+B9), LSA (N1/TP4, N2 TP5), Schram Foundation, Leibniz Society (Pakt fĂĽr Forschung) and Fonds der Chemischen Industrie to EDG and MRK, and Center for Medical Systems Biology (CMSB) to KWL and ABS. JS is supported by a stipend from the DFG graduate program (GRK 1167). We gratefully acknowledge the professional technical assistance of C Borutzki, H Dobrowolny, S Funke, M Marunde and K Pohlmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M R Kreutz.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smalla, KH., Mikhaylova, M., Sahin, J. et al. A comparison of the synaptic proteome in human chronic schizophrenia and rat ketamine psychosis suggest that prohibitin is involved in the synaptic pathology of schizophrenia. Mol Psychiatry 13, 878–896 (2008). https://doi.org/10.1038/mp.2008.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.60

Keywords

This article is cited by

Search

Quick links