Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Deep brain stimulation in addiction: a review of potential brain targets

Abstract

Deep brain stimulation (DBS) is an adjustable, reversible, non-destructive neurosurgical intervention using implanted electrodes to deliver electrical pulses to areas in the brain. DBS is currently investigated in psychiatry for the treatment of refractory obsessive–compulsive disorder, Tourette syndrome and depressive disorder. Although recent research in both animals and humans has indicated that DBS may be an effective intervention for patients with treatment-refractory addiction, it is not yet entirely clear which brain areas should be targeted. The objective of this review is to provide a systematic overview of the published literature on DBS and addiction and outline the most promising target areas using efficacy and adverse event data from both preclinical and clinical studies. We found 7 animal studies targeting six different brain areas: nucleus accumbens (NAc), subthalamic nucleus (STN), dorsal striatum, lateral habenula, medial prefrontal cortex (mPFC) and hypothalamus, and 11 human studies targeting two different target areas: NAc and STN. Our analysis of the literature suggests that the NAc is currently the most promising DBS target area for patients with treatment-refractory addiction. The mPFC is another promising target, but needs further exploration to establish its suitability for clinical purposes. We conclude the review with a discussion on translational issues in DBS research, medical ethical considerations and recommendations for clinical trials with DBS in patients with addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kern DS, Kumar R . Deep brain stimulation. Neurologist 2007; 13: 237–252.

    Article  Google Scholar 

  2. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C et al. Deep brain stimulation for treatment-resistant depression. Neuron 2005; 45: 651–660.

    Article  CAS  Google Scholar 

  3. Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyerson Br . Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 1999; 354: 1526.

    Article  CAS  Google Scholar 

  4. Vandewalle V, van der Linden C, Groenewegen HJ, Caemaert J . Stereotactic treatment of Gilles de la Tourette syndrome by high frequency stimulation of thalamus. Lancet 1999; 353: 724.

    Article  CAS  Google Scholar 

  5. Greenberg BD, Askland KD, Carpenter LL . The evolution of deep brain stimulation for neuropsychiatric disorders. Front Biosci 2008; 13: 4638–4648.

    Article  Google Scholar 

  6. Halpern CH, Wolf JA, Bale TL, Stunkard AJ, Danish SF, Grossman M et al. Deep brain stimulation in the treatment of obesity. J Neurosurg 2008; 109: 625–634.

    Article  Google Scholar 

  7. Hernando V, Pastor J, Pedrosa M, Peña E, Sola RG . Low-frequency bilateral hypothalamic stimulation for treatment of drug-resistant aggressiveness in a young man with mental retardation. Stereotactic Functional Neurosurg 2008; 86: 219–223.

    Article  Google Scholar 

  8. Kuhn JMD, Lenartz DMD, Mai JKM, Huff WMD, Klosterkoetter JMD, Sturm VMD . Disappearance of self-aggressive behavior in a brain-injured patient after deep brain stimulation of the hypothalamus: technical case report. [Report]. Neurosurgery 2008; 62: E1182.

    Article  Google Scholar 

  9. Kuhn J, Lenartz D, Huff W, Lee S, Koulousakis A, Klosterkoetter J et al. Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens: valuable therapeutic implications? J Neurol Neurosurg Psychiatry 2007; 78: 1152–1153.

    Article  Google Scholar 

  10. Levy D, Shabat-Simon M, Shalev U, Barnea-Ygael N, Cooper A, Zangen A . Repeated electrical stimulation of reward-related brain regions affects cocaine but not ‘natural’ reinforcement. J Neurosci 2007; 27: 14179–14189.

    Article  CAS  Google Scholar 

  11. Müller UJ, Sturm V, Voges J, Heinze HJ, Galazky I, Heldmann M et al. Successful treatment of chronic resistant alcoholism by deep brain stimulation of nucleus accumbens: first experience with three cases. Pharmacopsychiatry 2009; 42: 288–291.

    Article  Google Scholar 

  12. Leshner AI . Addiction is a brain disease, and it matters. Science 1997; 278: 45–47.

    Article  CAS  Google Scholar 

  13. McLellan AT . Have we evaluated addiction treatment correctly? Implications from a chronic care perspective. Addiction 2002; 97: 249–252.

    Article  Google Scholar 

  14. O’Brien CP, McLellan AT . Myths about the treatment of addiction. Lancet 1996; 347: 237–240.

    Article  Google Scholar 

  15. Koob GF, Volkow ND . Neurocircuitry of addiction. Neuropsychopharmacology 2009; 35: 217–238.

    Article  Google Scholar 

  16. Friedman A, Lax E, Dikshtein Y, Abraham L, Flaumenhaft Y, Sudai E et al. Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior. Neuropharmacology 2010; 59: 452–459.

    Article  CAS  Google Scholar 

  17. Liu HY, Jin J, Tang JS, Sun WX, Jia H, Yang XP et al. Chronic deep brain stimulation in the rat nucleus accumbens and its effect on morphine reinforcement. Addict Biol 2008; 13: 40–46.

    Article  Google Scholar 

  18. Henderson MB, Green AI, Bradford PS, Chau DT, Roberts DW, Leiter JC . Deep brain stimulation of the nucleus accumbens reduces alcohol intake in alcohol-preferring rats. Neurosurgical FOCUS 2010; 29: E12.

    Article  Google Scholar 

  19. Knapp CM, Tozier L, Pak A, Ciraulo DA, Kornetsky C . Deep brain stimulation of the nucleus accumbens reduces ethanol consumption in rats. Pharmacol Biochem Behav 2009; 92: 474–479.

    Article  CAS  Google Scholar 

  20. Vassoler FM, Schmidt HD, Gerard ME, Famous KR, Ciraulo DA, Kornetsky C et al. Deep brain stimulation of the nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug seeking in rats. J Neurosci 2008; 28: 8735–8739.

    Article  CAS  Google Scholar 

  21. Rouaud T, Lardeux S, Panayotis N, Paleressompoulle D, Cador M, Baunez C . Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc Natl Acad Sci USA 2010; 107: 1196–1200.

    Article  CAS  Google Scholar 

  22. Friedman A, Lax E, Dikshtein Y, Abraham L, Flaumenhaft Y, Sudai E et al. Electrical stimulation of the lateral habenula produces an inhibitory effect on sucrose self-administration. Neuropharmacology 2011; 60: 381–387.

    Article  CAS  Google Scholar 

  23. Kuhn J, Bauer R, Pohl S, Lenartz D, Huff W, Kim EH et al. Observations on unaided smoking cessation after deep brain stimulation of the nucleus accumbens. Eur Addiction Res 2009; 15: 196–201.

    Article  CAS  Google Scholar 

  24. Mantione M, van de Brink W, Schuurman PR, Denys D . Smoking cessation and weight loss after chronic deep brain stimulation of the nucleus accumbens: therapeutic and research implications: case report. Neurosurgery 2010; 66: E218.

    Article  Google Scholar 

  25. Zhou H, Xu J, Jiang J . Deep brain stimulation of nucleus accumbens on heroin-seeking behaviors: a case report. Biol Psychiatry 2011; 69: e41–e42.

    Article  Google Scholar 

  26. Evans AH, Lees AJ . Dopamine dysregulation syndrome in Parkinson's disease. Curr Opinion Neurol 2004; 17: 391–398.

    Article  Google Scholar 

  27. Ardouin C, Voon V, Worbe Y, Abouazar N, Czernecki V, Hosseini H et al. Pathological gambling in Parkinson's disease improves on chronic subthalamic nucleus stimulation. Mov Disord 2006; 21: 1941–1946.

    Article  Google Scholar 

  28. Bandini F, Primavera A, Pizzorno M, Cocito L . Using STN DBS and medication reduction as a strategy to treat pathological gambling in Parkinson's disease. Parkinsonism Related Disorders 2007; 13: 369–371.

    Article  Google Scholar 

  29. Knobel D, Aybek S, Pollo C, Vingerhoets FJG, Berney A . Rapid resolution of dopamine dysregulation syndrome (DDS) after subthalamic DBS for Parkinson disease (PD): a case report. Cognitive Behavioral Neurol 2008; 21: 187–189.

    Article  Google Scholar 

  30. Witjas T, Baunez C, Henry JM, Delfini M, Regis J, Cherif AA et al. Addiction in Parkinson's disease: impact of subthalamic nucleus deep brain stimulation. Mov Disord 2005; 20: 1052–1055.

    Article  Google Scholar 

  31. Smeding HMM, Goudriaan AE, Foncke EMJ, Schuurman PR, Speelman JD, Schmand B . Pathological gambling after bilateral subthalamic nucleus stimulation in Parkinson disease. J Neurol Neurosurg Psychiatry 2007; 78: 517–519.

    Article  CAS  Google Scholar 

  32. Lim SY, O’Sullivan SS, Kotschet K, Gallagher DA, Lacey C, Lawrence AD et al. Dopamine dysregulation syndrome, impulse control disorders and punding after deep brain stimulation surgery for Parkinson's disease. J Clin Neurosci 2009; 16: 1148–1152.

    Article  CAS  Google Scholar 

  33. Ballanger B, Eimeren van T, Moro I, Lozano AM, Hamani C, Boulinguez P et al. Stimulation of the subthalamic nucleus and impulsivity: release your horses. Ann Neurol 2009; 66: 817–824.

    Article  Google Scholar 

  34. Frank MJ, Samanta J, Moustafa AA, Sherman SJ . Hold your horses: impulsivity, deep brain stimulation, and medication in Parkinsonism. Science 2007; 318: 1309–1312.

    Article  CAS  Google Scholar 

  35. Halbig TD, Tse W, Frisina PG, Baker BR, Hollander E, Shapiro H et al. Subthalamic deep brain stimulation and impulse control in Parkinson's disease. Eur J Neurol 2009; 16: 493–497.

    Article  CAS  Google Scholar 

  36. Perry J, Carroll M . The role of impulsive behavior in drug abuse. Psychopharmacology 2008; 200: 1–26.

    Article  CAS  Google Scholar 

  37. Schlaepfer TE, Fins JJ . Deep brain stimulation and the neuroethics of responsible publishing. JAMA 2010; 303: 775–776.

    Article  CAS  Google Scholar 

  38. Kuhn J, Grundler TO, Lenartz D, Sturm V, Klosterkotter J, Huff W . Deep brain stimulation for psychiatric disorders. Dtsch Arztebl Int 2010; 107: 105–113.

    PubMed  PubMed Central  Google Scholar 

  39. Chen BT, Hopf FW, Bonci A . Synaptic plasticity in the mesolimbic system. Ann NY Acad Sci 2010; 1187: 129–139.

    Article  CAS  Google Scholar 

  40. Everitt BJ, Robbins TW . Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 2005; 8: 1481–1489.

    CAS  Google Scholar 

  41. Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ . The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 2010; 33: 267–276.

    Article  CAS  Google Scholar 

  42. Self DW, Nestler EJ . Molecular mechanisms of drug reinforcement and addiction. Annu Rev Neurosci 1995; 18: 463–495.

    Article  CAS  Google Scholar 

  43. Volkow ND, Fowler JS, Wang GJ . The addicted human brain viewed in the light of imaging studies: brain circuits and treatment strategies. Neuropharmacology 2004; 47: 3–13.

    Article  CAS  Google Scholar 

  44. McCracken CB, Grace AA . Nucleus accumbens deep brain stimulation produces region-specific alterations in local field potential oscillations and evoked responses in vivo. J Neurosci 2009; 29: 5354–5363.

    Article  CAS  Google Scholar 

  45. McCracken CB, Grace AA . High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo. J Neurosci 2007; 27: 12601–12610.

    Article  CAS  Google Scholar 

  46. Lubman DI, Yücel M, Pantelis C . Addiction, a condition of compulsive behaviour? Neuroimaging and neuropsychological evidence of inhibitory dysregulation. Addiction 2004; 99: 1491–1502.

    Article  Google Scholar 

  47. Lujan JL, Chaturvedi A, McIntyre CC . Tracking the mechanisms of deep brain stimulation for neuropsychiatric disorders. Front Biosci 2008; 13: 5892–5904.

    Article  Google Scholar 

  48. Sesia T, Bulthuis V, Tan S, Lim LW, Vlamings R, Blokland A et al. Deep brain stimulation of the nucleus accumbens shell increases impulsive behavior and tissue levels of dopamine and serotonin. Experiment Neurol 2010; 225: 302–309.

    Article  CAS  Google Scholar 

  49. van Dijk A, Mason O, Klompmakers AA, Feenstra MGP, Denys D . Unilateral deep brain stimulation in the nucleus accumbens core does not affect local monoamine release. J Neurosci Methods (in press).

  50. Naqvi NH, Rudrauf D, Damasio H, Bechara A . Damage to the insula disrupts addiction to cigarette smoking. Science 2007; 315: 531–534.

    Article  CAS  Google Scholar 

  51. Naqvi NH, Bechara A . The hidden island of addiction: the insula. Trends Neurosci 2009; 32: 56–67.

    Article  CAS  Google Scholar 

  52. Contreras M, Ceric F, Torrealba F . Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science 2007; 318: 655–658.

    Article  CAS  Google Scholar 

  53. Forget B, Pushparaj A, Le Foll B . Granular insular cortex inactivation as a novel therapeutic strategy for nicotine addiction. Biol Psychiatry 2010; 68: 265–271.

    Article  CAS  Google Scholar 

  54. Goldstein RZ, Craig AD, Bechara A, Garavan H, Childress AR, Paulus MP et al. The neurocircuitry of impaired insight in drug addiction. Trends Cognitive Sci 2009; 13: 372–380.

    Article  Google Scholar 

  55. Jarraya B, Brugières P, Tani N, Hodel J, Grandjacques B, Fénelon G et al. Disruption of cigarette smoking addiction after posterior cingulate damage. J Neurosurg 2010; 113: 1219–1221.

    Article  Google Scholar 

  56. Medvedev SV, Anichkov AD, Polyakov Y . Physiological mechanisms of the effectiveness of bilateral stereotactic cingulotomy against strong psychological dependence in drug addicts. Human Physiol 2003; 29: 492–497.

    Article  CAS  Google Scholar 

  57. Hamani C, Mayberg H, Snyder B, Giacobbe P, Kennedy S, Lozano AM . Deep brain stimulation of the subcallosal cingulate gyrus for depression: anatomical location of active contacts in clinical responders and a suggested guideline for targeting. J Neurosurg 2009; 111: 1209–1215.

    Article  Google Scholar 

  58. Hamani C, Mayberg H, Stone S, Laxton A, Haber S, Lozano AM . The subcallosal cingulate gyrus in the context of major depression. Biol Psychiatry 2011; 69: 301–308.

    Article  Google Scholar 

  59. Volkow ND, Wang GJ, Ma Y, Fowler JS, Wong C, Ding YS et al. Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls: relevance to addiction. J Neurosci 2005; 25: 3932–3939.

    Article  CAS  Google Scholar 

  60. Kringelbach ML, Green AL, Owen SLF, Schweder PM, Aziz TZ . Sing the mind electric—principles of deep brain stimulation. Eur J Neurosci 2010; 32: 1070–1079.

    Article  Google Scholar 

  61. Robinson TE . Addicted rats. Science 2004; 305: 951–953.

    Article  CAS  Google Scholar 

  62. Deroche-Gamonet V, Belin D, Piazza PV . Evidence for addiction-like behavior in the rat. Science 2004; 305: 1014–1017.

    Article  CAS  Google Scholar 

  63. Vanderschuren LJMJ, Everitt BJ . Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 2004; 305: 1017–1019.

    Article  CAS  Google Scholar 

  64. Voorn P, Brady LS, Berendse HW, Richfield EK . Densitometrical analysis of opioid receptor ligand binding in the human striatum—I. Distribution of [mu] opioid receptor defines shell and core of the ventral striatum. Neuroscience 1996; 75: 777–792.

    Article  CAS  Google Scholar 

  65. Haber SN, Knutson B . The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 2009; 35: 4–26.

    Article  Google Scholar 

  66. Gubellini P, Salin P, Kerkerian-Le Goff L, Baunez C . Deep brain stimulation in neurological diseases and experimental models: from molecule to complex behavior. Prog Neurobiol 2009; 89: 79–123.

    Article  Google Scholar 

  67. Carter A, Bell E, Racine E, Hall W . Ethical issues raised by proposals to treat addiction using deep brain stimulation. Neuroethics 2010; 4: 1–14.

    Google Scholar 

  68. Clausen J . Man, machine and in between. Nature 2009; 457: 1080–1081.

    Article  CAS  Google Scholar 

  69. Kringelbach ML, Aziz TZ . Deep brain stimulation. JAMA 2009; 301: 1705–1707.

    Article  CAS  Google Scholar 

  70. Kuhn J, Gaebel W, Klosterkoetter J, Woopen C . Deep brain stimulation as a new therapeutic approach in therapy-resistant mental disorders: ethical aspects of investigational treatment. Eur Arch Psychiatry Clin Neurosci 2009; 259: 135–141.

    Article  Google Scholar 

  71. Rabins P, Appleby BS, Brandt J, DeLong MR, Dunn LB, Gabriels L et al. Scientific and ethical issues related to deep brain stimulation for disorders of mood, behavior, and thought. Arch Gen Psychiatry 2009; 66: 931–937.

    Article  Google Scholar 

  72. Synofzik M, Schlaepfer TE . Electrodes in the brain—ethical criteria for research and treatment with deep brain stimulation for neuropsychiatric disorders. Brain Stimulation 2011; 4: 7–16.

    Article  Google Scholar 

  73. Carter A, Hall W . Proposals to trial deep brain stimulation to treat addiction are premature. Addiction 2011; 106: 235–237.

    Article  Google Scholar 

  74. Hall W . Stereotactic neurosurgical treatment of addiction: minimizing the chances of another ‘great and desperate cure’. Addiction 2006; 101: 1–3.

    PubMed  Google Scholar 

  75. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 2010; 67: 110–116.

    Article  Google Scholar 

  76. Denys D, Mantione M, Figee M, van den Munckhof P, Koerselman F, Westenberg H et al. Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Arch Gen Psychiatry 2010; 67: 1061–1068.

    Article  Google Scholar 

  77. Huff W, Lenartz D, Schormann M, Lee SH, Kuhn J, Koulousakis A et al. Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: outcomes after one year. Clin Neurol Neurosurg 2010; 112: 137–143.

    Article  Google Scholar 

  78. Termorshuizen F, Krol A, Prins M, Geskus R, van den Brink W, van Ameijden EJC . Prediction of relapse to frequent heroin use and the role of methadone prescription: an analysis of the Amsterdam Cohort Study among drug users. Drug Alcohol Dependence 2005; 79: 231–240.

    Article  Google Scholar 

  79. Flynn PM, Joe GW, Broome KM, Simpson DD, Brown BS . Recovery from opioid addiction in DATOS. J Substance Abuse Treatment 2003; 25: 177–186.

    Article  Google Scholar 

  80. Gossop M, Marsden J, Stewart D, Kidd T . The National Treatment Outcome Research Study (NTORS): 4–5 year follow-up results. Addiction 2003; 98: 291–303.

    Article  Google Scholar 

  81. Hser YI, Hoffman V, Grella CE, Anglin MD . A 33-year follow-up of narcotics addicts. Arch Gen Psychiatry 2001; 58: 503–508.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Geestkracht programme of the Netherlands Organization for Health Research and Development (ZonMw, Grant number 60-60600-97-168).

Financial Disclosures: Dr Schuurman received travel grants from Medtronic and occasional consultant fees for educational purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Luigjes.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luigjes, J., van den Brink, W., Feenstra, M. et al. Deep brain stimulation in addiction: a review of potential brain targets. Mol Psychiatry 17, 572–583 (2012). https://doi.org/10.1038/mp.2011.114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.114

Keywords

This article is cited by

Search

Quick links