Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dopamine D4 receptor, but not the ADHD-associated D4.7 variant, forms functional heteromers with the dopamine D2S receptor in the brain

Abstract

Polymorphic variants of the dopamine D4 receptor have been consistently associated with attention-deficit hyperactivity disorder (ADHD). However, the functional significance of the risk polymorphism (variable number of tandem repeats in exon 3) is still unclear. Here, we show that whereas the most frequent 4-repeat (D4.4) and the 2-repeat (D4.2) variants form functional heteromers with the short isoform of the dopamine D2 receptor (D2S), the 7-repeat risk allele (D4.7) does not. D2 receptor activation in the D2S–D4 receptor heteromer potentiates D4 receptor-mediated MAPK signaling in transfected cells and in the striatum, which did not occur in cells expressing D4.7 or in the striatum of knockin mutant mice carrying the 7 repeats of the human D4.7 in the third intracellular loop of the D4 receptor. In the striatum, D4 receptors are localized in corticostriatal glutamatergic terminals, where they selectively modulate glutamatergic neurotransmission by interacting with D2S receptors. This interaction shows the same qualitative characteristics than the D2S–D4 receptor heteromer-mediated mitogen-activated protein kinase (MAPK) signaling and D2S receptor activation potentiates D4 receptor-mediated inhibition of striatal glutamate release. It is therefore postulated that dysfunctional D2S–D4.7 heteromers may impair presynaptic dopaminergic control of corticostriatal glutamatergic neurotransmission and explain functional deficits associated with ADHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lauzon NM, Laviolette SR . Dopamine D4-receptor modulation of cortical neuronal network activity and emotional processing: implications for neuropsychiatric disorders. Behav Brain Res 2010; 208: 12–22.

    Article  CAS  Google Scholar 

  2. Tarazi FI, Campbell A, Yeghiayan SK, Baldessarini RJ . Localization of dopamine receptor subtypes in corpus striatum and nucleus accumbens septi of rat brain: comparison of D1-, D2-, and D4-like receptors. Neuroscience 1998; 83: 169–176.

    Article  CAS  Google Scholar 

  3. Svingos AL, Periasamy S, Pickel VM . Presynaptic dopamine D(4) receptor localization in the rat nucleus accumbens shell. Synapse 2000; 36: 222–232.

    Article  CAS  Google Scholar 

  4. LaHoste GJ, Swanson JM, Wigal SB, Glabe C, Wigal T, King N et al. Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol Psychiatry 1996; 1: 121–124.

    CAS  Google Scholar 

  5. Swanson JM, Kinsbourne M, Nigg J, Lanphear B, Stefanos GA, Volkow N et al. Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetics and environmental factors and the dopamine hypothesis. Neuropsychol Rev 2007; 17: 39–59.

    Article  Google Scholar 

  6. Casey BJ, Nigg JT, Durston S . New potential leads in the biology and treatment of attention deficit-hyperactivity disorder. Curr Opin Neurol 2007; 20: 119–124.

    Article  CAS  Google Scholar 

  7. Wang E, Ding YC, Flodman P, Kidd JR, Kidd KK, Grady DL et al. The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. Am J Hum Genet 2004; 74: 931–944.

    Article  CAS  Google Scholar 

  8. Chang FM, Kidd JR, Livak KJ, Pakstis AJ, Kidd KK . The world-wide distribution of allele frequencies at the human dopamine D4 receptor locus. Hum Genet 1996; 98: 91–101.

    Article  CAS  Google Scholar 

  9. Asghari V, Sanyal S, Buchwaldt S, Paterson A, Jovanovic V, Van Tol HH . Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J Neurochem 1995; 65: 1157–1165.

    Article  CAS  Google Scholar 

  10. Ferre S, Baler R, Bouvier M, Caron MG, Devi LA, Durroux T et al. Building a new conceptual framework for receptor heteromers. Nat Chem Biol 2009; 5: 131–134.

    Article  CAS  Google Scholar 

  11. Marcellino D, Ferré S, Casadó V, Cortés A, Le Foll B, Mazzola C et al. Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J Biol Chem 2008; 283: 26016–26025.

    Article  CAS  Google Scholar 

  12. Borroto-Escuela DO, Van Craenenbroeck K, Romero-Fernandez W, Guidolin D, Woods AS, Rivera A et al. Dopamine D2 and D4 receptor heteromerization and its allosteric receptor-receptor interactions. Biochem Biophys Res Commun 2011; 404: 928–934.

    Article  CAS  Google Scholar 

  13. De Mei C, Ramos M, Iitaka C, Borrelli E . Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. Curr Opin Pharmacol 2009; 9: 53–58.

    Article  CAS  Google Scholar 

  14. Carriba P, Navarro G, Ciruela F, Ferre S, Casado V, Agnati L et al. Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nat Methods 2008; 5: 727–733.

    Article  CAS  Google Scholar 

  15. Pontieri FE, Tanda G, Di Chiara G . Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the ‘shell’ as compared with the ‘core’ of the rat nucleus accumbens. Proc Natl Acad Sci USA 1995; 92: 12304–12308.

    Article  CAS  Google Scholar 

  16. Quarta D, Ferre S, Solinas M, You ZB, Hockemeyer J, Popoli P et al. Opposite modulatory roles for adenosine A1 and A2A receptors on glutamate and dopamine release in the shell of the nucleus accumbens. Effects of chronic caffeine exposure. J Neurochem 2004; 88: 1151–1158.

    Article  CAS  Google Scholar 

  17. Garcia M, Floran B, Arias-Montaño JA, Young JM, Aceves J . Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata. Neuroscience 1997; 80: 241–249.

    Article  CAS  Google Scholar 

  18. Cortés H, Paz F, Erlij D, Aceves J, Florán B . GABA(B) receptors modulate depolarization-stimulated [łH]glutamate release in slices of the pars reticulata of the rat substantia nigra. Eur J Pharmacol 2010; 649: 161–167.

    Article  Google Scholar 

  19. Powell SB, Paulus MP, Hartman DS, Godel T, Geyer MA . RO-10-5824 is a selective dopamine D4 receptor agonist that increases novel object exploration in C57 mice. Neuropharmacology 2003; 44: 473–481.

    Article  CAS  Google Scholar 

  20. Gackenheimer SL, Schaus JM, Gehlert DR . [3H]-quinelorane binds to D2 and D3 dopamine receptors in the rat brain. J Pharmacol Exp Ther 1995; 274: 1558–1565.

    CAS  PubMed  Google Scholar 

  21. Thomas TC, Kruzich PJ, Joyce BM, Gash CR, Suchland K, Surgener SP et al. Dopamine D4 receptor knockout mice exhibit neurochemical changes consistent with decreased dopamine release. J Neurosci Meth 2007; 166: 306–314.

    Article  CAS  Google Scholar 

  22. Thomas TC, Grandy DK, Gerhardt GA, Glaser PE . Decreased dopamine D4 receptor expression increases extracellular glutamate and alters its regulation in mouse striatum. Neuropsychopharmacology 2008; 34: 436–445.

    Article  Google Scholar 

  23. Bamford NS, Zhang H, Schmitz Y, Wu NP, Cepeda C, Levine SM et al. Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron 2004; 42: 653–663.

    Article  CAS  Google Scholar 

  24. Rondou P, Haegeman G, Van Craenenbroeck K . The dopamine D4 receptor: biochemical and signalling properties. Cell Mol Life Sci 2010; 67: 1971–1986.

    Article  CAS  Google Scholar 

  25. Kabbani N, Levenson R . A proteomic approach to receptor signaling: molecular mechanisms and therapeutic implications derived from discovery of the dopamine D2 receptor signalplex. Eur J Pharmacol 2007; 572: 83–93.

    Article  CAS  Google Scholar 

  26. Yao WD, Spealman RD, Zhang J . Dopaminergic signaling in dendritic spines. Biochem Pharmacol 2008; 75: 2055–2069.

    Article  CAS  Google Scholar 

  27. Lin R, Karpa K, Kabbani N, Goldman-Rakic P, Levenson R . Dopamine D2 and D3 receptors are linked to the actin cytoskeleton via interaction with filamin A. Proc Natl Acad Sci USA 2001; 98: 5258–5263.

    Article  CAS  Google Scholar 

  28. Binda AV, Kabbani N, Lin R, Levenson R . D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1N. Mol Pharmacol 2002; 62: 507–513.

    Article  CAS  Google Scholar 

  29. Jeanneteau F, Diaz J, Sokoloff P, Griffon N . Interactions of GIPC with dopamine D2, D3 but not D4 receptors define a novel mode of regulation of G protein-coupled receptors. Mol Biol Cell 2004; 15: 696–705.

    Article  CAS  Google Scholar 

  30. Basile M, Lin R, Kabbani N, Karpa K, Kilimann M, Simpson I et al. Paralemmin interacts with D3 dopamine receptors: implications for membrane localization and cAMP signaling. Arch Biochem Biophys 2006; 446: 60–68.

    Article  CAS  Google Scholar 

  31. Yin HH, Lovinger DM . Frequency-specific and D2 receptor-mediated inhibition of glutamate release by retrograde endocannabinoid signaling. Proc Natl Acad Sci USA 2006; 103: 8251–8256.

    Article  CAS  Google Scholar 

  32. Cheon KA, Kim BN, Cho SC . Association of 4-repeat allele of the dopamine D4 receptor gene exon III polymorphism and response to methylphenidate treatment in Korean ADHD children. Neuropsychopharmacology 2007; 32: 1377–1383.

    Article  CAS  Google Scholar 

  33. Hamarman S, Fossella J, Ulger C, Brimacombe M, Dermody J . Dopamine receptor 4 (DRD4) 7-repeat allele predicts methylphenidate dose response in children with attention-deficit/hyperactivity disorder: a pharmacogenetic study. J Child Adolesc Psychopharmacol 2004; 14: 564–574.

    Article  Google Scholar 

  34. Ding YC, Chi HC, Grady DL, Morishima A, Kidd JR, Kidd KK et al. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc Natl Acad Sci USA 2002; 99: 309–314.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the technical help from Jasmina Jiménez (University of Barcelona). The study was supported by the NIDA IRP funds and from Grants from Spanish Ministerio de Ciencia y Tecnología (SAF2008-03229-E, SAF2009-07276, SAF2010-18472, SAF2008-01462 and Consolider-Ingenio CSD2008-00005) and from Consejo Nacional de Ciencia y Tecnología de México (50428-M). PJM is a Ramón y Cajal Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Ferré.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, S., Rangel-Barajas, C., Peper, M. et al. Dopamine D4 receptor, but not the ADHD-associated D4.7 variant, forms functional heteromers with the dopamine D2S receptor in the brain. Mol Psychiatry 17, 650–662 (2012). https://doi.org/10.1038/mp.2011.93

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.93

Keywords

This article is cited by

Search

Quick links