Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

What’s hAPPening at synapses? The role of amyloid β-protein precursor and β-amyloid in neurological disorders

Abstract

Accumulating evidence suggests that dysregulated levels of amyloid β-protein precursor (APP) and its catabolites contribute to the impaired synaptic plasticity and seizure incidence observed in several neurological disorders, including Alzheimer’s disease, fragile X syndrome, Down’s syndrome, autism, epilepsy and Parkinson’s disease as well as in brain injury. This review article summarizes what is known regarding the synaptic synthesis, processing and function of APP and amyloid-beta (Aβ), as well as discusses how these proteins could contribute to the altered synaptic plasticity and pathology of the aforementioned disorders. In addition, APP and its proteolytic fragments are emerging as biomarkers for neurological health, and pharmacological interventions that modulate their levels, such as secretase inhibitors, passive immunotherapy against Aβ and mGluR5 antagonists, are reviewed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Shigematsu K, McGeer PL, McGeer EG . Localization of amyloid precursor protein in selective postsynaptic densities of rat cortical neurons. Brain Res 1992; 592: 353–357.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang YW, Thompson R, Zhang H, Xu H . APP processing in Alzheimer’s disease. Mol Brain 2011; 4: 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC et al. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 2005; 48: 913–922.

    Article  CAS  PubMed  Google Scholar 

  4. Westmark CJ, Malter JS . FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol 2007; 5: e52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Westmark CJ, Malter JS . The regulation of APP expression by RNA-binding proteins. Ageing Res Rev, 2012, e-pub ahead of print 5 April 2012 doi:10.1016/j.arr.2012.03.005 (in press).

  6. Beyreuther K, Pollwein P, Multhaup G, Monning U, Konig G, Dyrks T et al. Regulation and expression of the Alzheimer’s beta/A4 amyloid protein precursor in health, disease, and Down’s syndrome. Ann NY Acad Sci 1993; 695: 91–102.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng SV, Nadeau JH, Tanzi RE, Watkins PC, Jagadesh J, Taylor BA et al. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17. Proc Natl Acad Sci USA 1988; 85: 6032–6036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Santoro MR, Bray SM, Warren ST . Molecular mechanisms of fragile X syndrome: A twenty-year perspective. Annu Rev Pathol 2012; 7: 219–245.

    Article  CAS  PubMed  Google Scholar 

  9. Lee EK, Kim HH, Kuwano Y, Abdelmohsen K, Srikantan S, Subaran SS et al. hnRNP C promotes APP translation by competing with FMRP for APP mRNA recruitment to P bodies. Nat Struct Mol Biol 2010; 17: 732–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sokol DK, Maloney B, Long JM, Ray B, Lahiri DK . Autism, Alzheimer disease, and fragile X: APP, FMRP, and mGluR5 are molecular links. Neurology 2011; 76: 1344–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 2011; 146: 247–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hung AY, Koo EH, Haass C, Selkoe DJ . Increased expression of beta-amyloid precursor protein during neuronal differentiation is not accompanied by secretory cleavage. Proc Natl Acad Sci USA 1992; 89: 9439–9443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loffler J, Huber G . Beta-amyloid precursor protein isoforms in various rat brain regions and during brain development. J Neurochem 1992; 59: 1316–1324.

    Article  CAS  PubMed  Google Scholar 

  14. Moya KL, Benowitz LI, Schneider GE, Allinquant B . The amyloid precursor protein is developmentally regulated and correlated with synaptogenesis. Dev Biol 1994; 161: 597–603.

    Article  CAS  PubMed  Google Scholar 

  15. Berardi N, Pizzorusso T, Maffei L . Critical periods during sensory development. Curr Opin Neurobiol 2000; 10: 138–145.

    Article  CAS  PubMed  Google Scholar 

  16. Lu R, Wang H, Liang Z, Ku L, O’Donnell WT, Li W et al. The fragile X protein controls microtubule-associated protein 1B translation and microtubule stability in brain neuron development. Proc Natl Acad Sci USA 2004; 101: 15201–15206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khandjian EW, Fortin A, Thibodeau A, Tremblay S, Cote F, Devys D et al. A heterogeneous set of FMR1 proteins is widely distributed in mouse tissues and is modulated in cell culture. Hum Mol Genet 1995; 4: 783–789.

    Article  CAS  PubMed  Google Scholar 

  18. Singh K, Gaur P, Prasad S . Fragile x mental retardation (fmr-1) gene expression is down regulated in brain of mice during aging. Mol Biol Rep 2007; 34: 173–181.

    Article  CAS  PubMed  Google Scholar 

  19. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K . Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 1985; 82: 4245–4249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gandy SE, Caporaso GL, Buxbaum JD, de Cruz Silva O, Iverfeldt K, Nordstedt C et al. Protein phosphorylation regulates relative utilization of processing pathways for Alzheimer beta/A4 amyloid precursor protein. Ann NY Acad Sci 1993; 695: 117–121.

    Article  CAS  PubMed  Google Scholar 

  21. Mattson MP . Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 1997; 77: 1081–1132.

    Article  CAS  PubMed  Google Scholar 

  22. Steiner H, Fluhrer R, Haass C . Intramembrane proteolysis by gamma-secretase. J Biol Chem 2008; 283: 29627–29631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Klein WL, Stine WB, Teplow DB . Small assemblies of unmodified amyloid beta-protein are the proximate neurotoxin in Alzheimer’s disease. Neurobiol Aging 2004; 25: 569–580.

    Article  CAS  PubMed  Google Scholar 

  24. Hoe HS, Lee HK, Pak DT . The upside of APP at synapses. CNS Neurosci Ther 2012; 18: 47–56.

    Article  CAS  PubMed  Google Scholar 

  25. Gralle M, Botelho MG, Wouters FS . Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers. J Biol Chem 2009; 284: 15016–15025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cao Q, Huang YS, Kan MC, Richter JD . Amyloid precursor proteins anchor CPEB to membranes and promote polyadenylation-induced translation. Mol Cell Biol 2005; 25: 10930–10939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Claasen AM, Guevremont D, Mason-Parker SE, Bourne K, Tate WP, Abraham WC et al. Secreted amyloid precursor protein-alpha upregulates synaptic protein synthesis by a protein kinase G-dependent mechanism. Neurosci Lett 2009; 460: 92–96.

    Article  CAS  PubMed  Google Scholar 

  28. Taylor CJ, Ireland DR, Ballagh I, Bourne K, Marechal NM, Turner PR et al. Endogenous secreted amyloid precursor protein-alpha regulates hippocampal NMDA receptor function, long-term potentiation and spatial memory. Neurobiol Dis 2008; 31: 250–260.

    Article  CAS  PubMed  Google Scholar 

  29. Ishida A, Furukawa K, Keller JN, Mattson MP . Secreted form of beta-amyloid precursor protein shifts the frequency dependency for induction of LTD, and enhances LTP in hippocampal slices. Neuroreport 1997; 8: 2133–2137.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng H, Koo EH . Biology and pathophysiology of the amyloid precursor protein. Mol Neurodegener 2011; 6: 27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M . APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 2009; 457: 981–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nalbantoglu J, Tirado-Santiago G, Lahsaini A, Poirier J, Goncalves O, Verge G et al. Impaired learning and LTP in mice expressing the carboxy terminus of the Alzheimer amyloid precursor protein. Nature 1997; 387: 500–505.

    Article  CAS  PubMed  Google Scholar 

  33. Koffie RM, Hyman BT, Spires-Jones TL . Alzheimer’s disease: Synapses gone cold. Mol Neurodegener 2011; 6: 63.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Blanchard BJ, Thomas VL, Ingram VM . Mechanism of membrane depolarization caused by the Alzheimer Abeta1–42 peptide. Biochem Biophys Res Commun 2002; 293: 1197–1203.

    Article  CAS  PubMed  Google Scholar 

  35. Verdier Y, Zarandi M, Penke B . Amyloid beta-peptide interactions with neuronal and glial cell plasma membrane: Binding sites and implications for Alzheimer’s disease. J Pept Sci 2004; 10: 229–248.

    Article  CAS  PubMed  Google Scholar 

  36. Renner M, Lacor PN, Velasco PT, Xu J, Contractor A, Klein WL et al. Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron 2010; 66: 739–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takashima A, Noguchi K, Michel G, Mercken M, Hoshi M, Ishiguro K et al. Exposure of rat hippocampal neurons to amyloid beta peptide (25–35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3 beta. Neurosci Lett 1996; 203: 33–36.

    Article  CAS  PubMed  Google Scholar 

  38. Caccamo A, Maldonado MA, Majumder S, Medina DX, Holbein W, Magri A et al. Naturally secreted amyloid-beta increases mammalian target of rapamycin (mTOR) activity via a PRAS40-mediated mechanism. J Biol Chem 2011; 286: 8924–8932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mines MA, Beurel E, Jope RS . Regulation of cell survival mechanisms in Alzheimer’s disease by glycogen synthase kinase-3. Int J Alzheimers Dis 2011 2011; 861072.

  40. Oddo S . The role of mTOR signaling in Alzheimer disease. Front Biosci 2012; 4: 941–952.

    Article  Google Scholar 

  41. Westmark CJ, Westmark PR, O’Riordan KJ, Ray BC, Hervey CM, Salamat MS et al. Reversal of fragile X phenotypes by manipulation of AβPP/Aβ levels in Fmr1 mice. PLoS One 2011; 6: e26549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Le W, Xie WJ, Nyormoi O, Ho BK, Smith RG, Appel SH . Beta-Amyloid1-40 increases expression of beta-amyloid precursor protein in neuronal hybrid cells. J Neurochem 1995; 65: 2373–2376.

    Article  CAS  PubMed  Google Scholar 

  43. Marsden IT, Minamide LS, Bamburg JR . Amyloid-beta-induced amyloid-beta secretion: a possible feed-forward mechanism in Alzheimer’s disease. J Alzheimers Dis 2011; 24: 681–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Casley CS, Lakics V, Lee HG, Broad LM, Day TA, Cluett T et al. Up-regulation of astrocyte metabotropic glutamate receptor 5 by amyloid-beta peptide. Brain Res 2009; 1260: 65–75.

    Article  CAS  PubMed  Google Scholar 

  45. Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL et al. Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 2004; 24: 10191–10200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ferreira ST, Klein WL . The abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem 2011; 96: 529–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA . Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003; 60: 1119–1122.

    Article  PubMed  Google Scholar 

  48. Van Nostrand WE, Wagner SL, Shankle WR, Farrow JS, Dick M, Rozemuller JM et al. Decreased levels of soluble amyloid beta-protein precursor in cerebrospinal fluid of live Alzheimer disease patients. Proc Natl Acad Sci USA 1992; 89: 2551–2555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lannfelt L, Basun H, Wahlund LO, Rowe BA, Wagner SL . Decreased alpha-secretase-cleaved amyloid precursor protein as a diagnostic marker for Alzheimer’s disease. Nat Med 1995; 1: 829–832.

    Article  CAS  PubMed  Google Scholar 

  50. Coleman P, Federoff H, Kurlan R . A focus on the synapse for neuroprotection in Alzheimer disease and other dementias. Neurology 2004; 63: 1155–1162.

    Article  PubMed  Google Scholar 

  51. Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P et al. Coupling of mGluR/Homer and PSD-95 complexes by the shank family of postsynaptic density proteins. Neuron 1999; 23: 583–592.

    Article  CAS  PubMed  Google Scholar 

  52. Roselli F, Hutzler P, Wegerich Y, Livrea P, Almeida OF . Disassembly of shank and homer synaptic clusters is driven by soluble beta-amyloid(1–40) through divergent NMDAR-dependent signalling pathways. PLoS One 2009; 4: e6011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roselli F, Tirard M, Lu J, Hutzler P, Lamberti P, Livrea P et al. Soluble beta-amyloid1–40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J Neurosci 2005; 25: 11061–11070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Almeida CG, Tampellini D, Takahashi RH, Greengard P, Lin MT, Snyder EM et al. Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol Dis 2005; 20: 187–198.

    Article  CAS  PubMed  Google Scholar 

  55. Bell KA, O’Riordan KJ, Sweatt JD, Dineley KT . MAPK recruitment by beta-amyloid in organotypic hippocampal slice cultures depends on physical state and exposure time. J Neurochem 2004; 91: 349–361.

    Article  CAS  PubMed  Google Scholar 

  56. Wang LW, Berry-Kravis E, Hagerman RJ . Fragile X: leading the way for targeted treatments in autism. Neurotherapeutics 2010; 7: 264–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hagerman RJ, Hagerman PJ . Physical and Behavioral Phenotype. John Hopkins University Press: Baltimore, 2002.

    Google Scholar 

  58. Beckel-Mitchener A, Greenough WT . Correlates across the structural, functional, and molecular phenotypes of fragile X syndrome. Ment Retard Dev Disabil Res Rev 2004; 10: 53–59.

    Article  PubMed  Google Scholar 

  59. D’Agata V, Warren ST, Zhao W, Torre ER, Alkon DL, Cavallaro S . Gene expression profiles in a transgenic animal model of fragile X syndrome. Neurobiol Dis 2002; 10: 211–218.

    Article  CAS  PubMed  Google Scholar 

  60. Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA, Weiler IJ et al. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci USA 1997; 94: 5401–5404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rudelli RD, Brown WT, Wisniewski K, Jenkins EC, Laure-Kamionowska M, Connell F et al. Adult fragile X syndrome. clinico-neuropathologic findings. Acta Neuropathol 1985; 67: 289–295.

    Article  CAS  PubMed  Google Scholar 

  62. Irwin SA, Patel B, Idupulapati M, Harris JB, Crisostomo RA, Larsen BP et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 2001; 98: 161–167.

    Article  CAS  PubMed  Google Scholar 

  63. Hinton VJ, Brown WT, Wisniewski K, Rudelli RD . Analysis of neocortex in three males with the fragile X syndrome. Am J Med Genet 1991; 41: 289–294.

    Article  CAS  PubMed  Google Scholar 

  64. Hagerman PJ, Hagerman RJ . Fragile X-associated tremor/ataxia syndrome (FXTAS). Ment Retard Dev Disabil Res Rev 2004; 10: 25–30.

    Article  PubMed  Google Scholar 

  65. Tassone F, Greco CM, Hunsaker MR, Seritan AL, Berman RF, Gane LW et al. Neuropathological, clinical and molecular pathology in female fragile X premutation carriers with and without FXTAS. Genes Brain Behav 2012; 11: 577–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Menard C, Quirion R . Successful cognitive aging in rats: a role for mGluR5 glutamate receptors, homer 1 proteins and downstream signaling pathways. PLoS One 2012; 7: e28666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mao L, Yang L, Tang Q, Samdani S, Zhang G, Wang JQ . The scaffold protein Homer1b/c links metabotropic glutamate receptor 5 to extracellular signal-regulated protein kinase cascades in neurons. J Neurosci 2005; 25: 2741–2752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ronesi JA, Huber KM . Homer interactions are necessary for metabotropic glutamate receptor-induced long-term depression and translational activation. J Neurosci 2008; 28: 543–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ronesi JA, Collins KA, Hays SA, Tsai NP, Guo W, Birnbaum SG et al. Disrupted homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nat Neurosci 2012; 15: 431–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Parisiadou L, Bethani I, Michaki V, Krousti K, Rapti G, Efthimiopoulos S . Homer2 and Homer3 interact with amyloid precursor protein and inhibit abeta production. Neurobiol Dis 2008; 30: 353–364.

    Article  CAS  PubMed  Google Scholar 

  71. Wisniewski KE, Dalton AJ, McLachlan C, Wen GY, Wisniewski HM . Alzheimer’s disease in Down’s syndrome: clinicopathologic studies. Neurology 1985; 35: 957–961.

    Article  CAS  PubMed  Google Scholar 

  72. Coppus AM, Schuur M, Vergeer J, Janssens AC, Oostra BA, Verbeek MM et al. Plasma beta amyloid and the risk of Alzheimer’s disease in Down syndrome. Neurobiol Aging 2012; 33: 1988–1994.

    Article  CAS  PubMed  Google Scholar 

  73. Kaufmann WE, Moser HW . Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 2000; 10: 981–991.

    Article  CAS  PubMed  Google Scholar 

  74. Oka A, Takashima S . The up-regulation of metabotropic glutamate receptor 5 (mGluR5) in Down’s syndrome brains. Acta Neuropathol 1999; 97: 275–278.

    Article  CAS  PubMed  Google Scholar 

  75. Clifford S, Dissanayake C, Bui QM, Huggins R, Taylor AK, Loesch DZ . Autism spectrum phenotype in males and females with fragile X full mutation and premutation. J Autism Dev Disord 2007; 37: 738–747.

    Article  PubMed  Google Scholar 

  76. Currenti SA . Understanding and determining the etiology of autism. Cell Mol Neurobiol 2010; 30: 161–171.

    Article  PubMed  Google Scholar 

  77. Sokol DK, Chen D, Farlow MR, Dunn DW, Maloney B, Zimmer JA et al. High levels of Alzheimer beta-amyloid precursor protein (APP) in children with severely autistic behavior and aggression. J Child Neurol 2006; 21: 444–449.

    Article  PubMed  Google Scholar 

  78. Bailey AR, Giunta BN, Obregon D, Nikolic WV, Tian J, Sanberg CD et al. Peripheral biomarkers in autism: Secreted amyloid precursor protein-alpha as a probable key player in early diagnosis. Int J Clin Exp Med 2008; 1: 338–344.

    PubMed  PubMed Central  Google Scholar 

  79. Ray B, Long JM, Sokol DK, Lahiri DK . Increased secreted amyloid precursor protein-alpha (sAPPα) in severe autism: Proposal of a specific, anabolic pathway and putative biomarker. PLoS One 2011; 6: e20405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hauser WA, Annegers JF, Kurland LT . Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia 1993; 34: 453–468.

    Article  CAS  PubMed  Google Scholar 

  81. Mendez M, Lim G . Seizures in elderly patients with dementia: Epidemiology and management. Drugs Aging 2003; 20: 791–803.

    Article  CAS  PubMed  Google Scholar 

  82. Wisniewski KE, Segan SM, Miezejeski CM, Sersen EA, Rudelli RD . The fra(X) syndrome: Neurological, electrophysiological, and neuropathological abnormalities. Am J Med Genet 1991; 38: 476–480.

    Article  CAS  PubMed  Google Scholar 

  83. Musumeci SA, Hagerman RJ, Ferri R, Bosco P, Dalla Bernardina B, Tassinari CA et al. Epilepsy and EEG findings in males with fragile X syndrome. Epilepsia 1999; 40: 1092–1099.

    Article  CAS  PubMed  Google Scholar 

  84. Pueschel SM, Louis S, McKnight P . Seizure disorders in Down syndrome. Arch Neurol 1991; 48: 318–320.

    Article  CAS  PubMed  Google Scholar 

  85. Volkmar FR, Nelson DS . Seizure disorders in autism. J Am Acad Child Adolesc Psychiatry 1990; 29: 127–129.

    Article  CAS  PubMed  Google Scholar 

  86. Giovanardi Rossi P, Posar A, Parmeggiani A . Epilepsy in adolescents and young adults with autistic disorder. Brain Dev 2000; 22: 102–106.

    Article  CAS  PubMed  Google Scholar 

  87. Meisler MH, O’Brien JE, Sharkey LM . Sodium channel gene family: Epilepsy mutations, gene interactions and modifier effects. J Physiol 2010; 588: 1841–1848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sheng JG, Boop FA, Mrak RE, Griffin WS . Increased neuronal beta-amyloid precursor protein expression in human temporal lobe epilepsy: association with interleukin-1 alpha immunoreactivity. J Neurochem 1994; 63: 1872–1879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mackenzie IR, Miller LA . Senile plaques in temporal lobe epilepsy. Acta Neuropathol 1994; 87: 504–510.

    Article  CAS  PubMed  Google Scholar 

  90. Nussbaum RL, Ellis CE . Alzheimer’s disease and Parkinson’s disease. N Engl J Med 2003; 348: 1356–1364.

    Article  CAS  PubMed  Google Scholar 

  91. Alves G, Bronnick K, Aarsland D, Blennow K, Zetterberg H, Ballard C et al. CSF amyloid-beta and tau proteins, and cognitive performance, in early and untreated Parkinson’s disease: The Norwegian ParkWest study. J Neurol Neurosurg Psychiatry 2010; 81: 1080–1086.

    Article  PubMed  Google Scholar 

  92. Bedrosian TA, Herring KL, Weil ZM, Nelson RJ . Altered temporal patterns of anxiety in aged and amyloid precursor protein (APP) transgenic mice. Proc Natl Acad Sci USA 2011; 108: 11686–11691.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Metti AL, Cauley JA, Newman AB, Ayonayon HN, Barry LC, Kuller LM et al. Plasma beta amyloid level and depression in older adults. J Gerontol A Biol Sci Med Sci 2012, e-pub ahead of print 12 April 2012 doi:10.1093/gerona/gls093 (in press).

  94. Jones CT, Morris S, Yates CM, Moffoot A, Sharpe C, Brock DJ et al. Mutation in codon 713 of the beta amyloid precursor protein gene presenting with schizophrenia. Nat Genet 1992; 1: 306–309.

    Article  CAS  PubMed  Google Scholar 

  95. Westmark CJ, Malter JS . Translating memories: the role of protein biosynthesis in synaptic plasticity. In: Protein Biosynthesis. Nova Science Publishers, Inc.: New York, 2009, pp 1–29.

    Google Scholar 

  96. Mattson MP, Barger SW, Cheng B, Lieberburg I, Smith-Swintosky VL, Rydel RE . Beta-amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. Trends Neurosci 1993; 16: 409–414.

    Article  CAS  PubMed  Google Scholar 

  97. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G et al. High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: Synaptotoxicity without plaque formation. J Neurosci 2000; 20: 4050–4058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mark RJ, Ashford JW, Goodman Y, Mattson MP . Anticonvulsants attenuate amyloid beta-peptide neurotoxicity, Ca2+ deregulation, and cytoskeletal pathology. Neurobiol Aging 1995; 16: 187–198.

    Article  CAS  PubMed  Google Scholar 

  99. Noebels J . A perfect storm: converging paths of epilepsy and Alzheimer’s dementia intersect in the hippocampal formation. Epilepsia 2011; 52 (Suppl 1): 39–46.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Palop JJ, Mucke L . Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: From synapses toward neural networks. Nat Neurosci 2010; 13: 812–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Huber KM, Gallagher SM, Warren ST, Bear MF . Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA 2002; 99: 7746–7750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Huber KM, Kayser MS, Bear MF . Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 2000; 288: 1254–1257.

    Article  CAS  PubMed  Google Scholar 

  103. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T et al. APP processing and synaptic function. Neuron 2003; 37: 925–937.

    Article  CAS  PubMed  Google Scholar 

  104. Kang JE, Lim MM, Bateman RJ, Lee JJ, Smyth LP, Cirrito JR et al. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 2009; 326: 1005–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schupf N, Tang MX, Fukuyama H, Manly J, Andrews H, Mehta P et al. Peripheral abeta subspecies as risk biomarkers of Alzheimer’s disease. Proc Natl Acad Sci USA 2008; 105: 14052–14057.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Al-Ayadhi LY, Ben Bacha AG, Kotb M, El-Ansary AK . A novel study on amyloid beta peptide 40, 42 and 40/42 ratio in Saudi autistics. Behav Brain Funct 2012; 8: 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mehta PD, Capone G, Jewell A, Freedland RL . Increased amyloid beta protein levels in children and adolescents with Down syndrome. J Neurol Sci 2007; 254: 22–27.

    Article  CAS  PubMed  Google Scholar 

  108. Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A et al. A specific amyloid-beta protein assembly in the brain impairs memory. Nature 2006; 440: 352–357.

    Article  CAS  PubMed  Google Scholar 

  109. Kim SH, Tang YP, Sisodia SS . Abeta star: a light onto synaptic dysfunction? Nat Med 2006; 12: 760–761.

    Article  CAS  PubMed  Google Scholar 

  110. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC et al. The Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement 2012; 8: S1–S68.

    Article  PubMed  Google Scholar 

  111. Fleisher AS, Chen K, Liu X, Roontiva A, Thiyyagura P, Ayutyanont N et al. Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch Neurol 2011; 68: 1404–1411.

    Article  PubMed  Google Scholar 

  112. Fodero-Tavoletti MT, Brockschnieder D, Villemagne VL, Martin L, Connor AR, Thiele A et al. In vitro characterization of [(18)F]-florbetaben, an abeta imaging radiotracer. Nucl Med Biol 2012, e-pub ahead of print 11 April 2012 doi:10.1016/j.nucmedbio.2012.03.001 (in press).

  113. Koronyo Y, Salumbides BC, Black KL, Koronyo-Hamaoui M . Alzheimer’s disease in the retina: imaging retinal abeta plaques for early diagnosis and therapy assessment. Neurodegener Dis 2012; 10: 285–293.

    Article  CAS  PubMed  Google Scholar 

  114. Schmidt A, Pahnke J . Efficient near-infrared in vivo imaging of amyoid-beta deposits in Alzheimer’s disease mouse models. J Alzheimers Dis 2012; 30: 651–664.

    Article  CAS  PubMed  Google Scholar 

  115. Mattsson N, Andreasson U, Persson S, Arai H, Batish SD, Bernardini S et al. The Alzheimer’s association external quality control program for cerebrospinal fluid biomarkers. Alzheimers Dement 2011; 7: 386, 395.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Westmark CJ, Hervey CM, Berry-Kravis EM, Malter JS . Effect of anticoagulants on amyloid beta-protein precursor and amyloid beta levels in plasma. Alzheimers Dis Parkinson 2011; 1: 1–3.

    Google Scholar 

  117. Ghosh AK, Brindisi M, Tang J . Developing beta-secretase inhibitors for treatment of Alzheimer’s disease. J Neurochem 2012; 120 (Suppl 1): 71–83.

    Article  CAS  PubMed  Google Scholar 

  118. Chang WP, Huang X, Downs D, Cirrito JR, Koelsch G, Holtzman DM et al. Beta-secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice. FASEB J 2011; 25: 775–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. May PC, Dean RA, Lowe SL, Martenyi F, Sheehan SM, Boggs LN et al. Robust central reduction of amyloid-beta in humans with an orally available, non-peptidic beta-secretase inhibitor. J Neurosci 2011; 31: 16507–16516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wolfe MS . Gamma-secretase inhibitors and modulators for Alzheimer’s disease. J Neurochem 2012; 120 (Suppl 1): 89–98.

    Article  CAS  PubMed  Google Scholar 

  121. Kounnas MZ, Danks AM, Cheng S, Tyree C, Ackerman E, Zhang X et al. Modulation of gamma-secretase reduces beta-amyloid deposition in a transgenic mouse model of Alzheimer’s disease. Neuron 2010; 67: 769–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. He G, Luo W, Li P, Remmers C, Netzer WJ, Hendrick J et al. Gamma-secretase activating protein is a therapeutic target for Alzheimer’s disease. Nature 2010; 467: 95–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Selkoe DJ . Resolving controversies on the path to Alzheimer’s therapeutics. Nat Med 2011; 17: 1060–1065.

    Article  CAS  PubMed  Google Scholar 

  124. Broytman O, Malter JS . Anti-abeta: The good, the bad, and the unforeseen. J Neurosci Res 2004; 75: 301–306.

    Article  CAS  PubMed  Google Scholar 

  125. Vellas B, Black R, Thal LJ, Fox NC, Daniels M, McLennan G et al. Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr Alzheimer Res 2009; 6: 144–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rozkalne A, Spires-Jones TL, Stern EA, Hyman BT . A single dose of passive immunotherapy has extended benefits on synapses and neurites in an Alzheimer’s disease mouse model. Brain Res 2009; 1280: 178–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kotilinek LA, Bacskai B, Westerman M, Kawarabayashi T, Younkin L, Hyman BT et al. Reversible memory loss in a mouse transgenic model of Alzheimer’s disease. J Neurosci 2002; 22: 6331–6335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mohajeri MH, Saini K, Schultz JG, Wollmer MA, Hock C, Nitsch RM . Passive immunization against beta-amyloid peptide protects central nervous system (CNS) neurons from increased vulnerability associated with an Alzheimer’s disease-causing mutation. J Biol Chem 2002; 277: 33012–33017.

    Article  CAS  PubMed  Google Scholar 

  129. Kerchner GA, Boxer AL . Bapineuzumab. Expert Opin Biol Ther 2010; 10: 1121–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jellinger KA . Alzheimer disease and cerebrovascular pathology: An update. J Neural Transm 2002; 109: 813–836.

    Article  CAS  PubMed  Google Scholar 

  131. Greenberg SM . Cerebral amyloid angiopathy: prospects for clinical diagnosis and treatment. Neurology 1998; 51: 690–694.

    Article  CAS  PubMed  Google Scholar 

  132. Morgan D . Mechanisms of A beta plaque clearance following passive A beta immunization. Neurodegener Dis 2005; 2: 261–266.

    Article  CAS  PubMed  Google Scholar 

  133. Morgan D . Immunotherapy for Alzheimer’s disease. J Intern Med 2011; 269: 54–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Moldrich RX, Chapman AG, De Sarro G, Meldrum BS . Glutamate metabotropic receptors as targets for drug therapy in epilepsy. Eur J Pharmacol 2003; 476: 3–16.

    Article  CAS  PubMed  Google Scholar 

  135. Bear MF, Huber KM, Warren ST . The mGluR theory of fragile X mental retardation. Trends Neurosci 2004; 27: 370–377.

    Article  CAS  PubMed  Google Scholar 

  136. Dolen G, Osterweil E, Rao BS, Smith GB, Auerbach BD, Chattarji S et al. Correction of fragile X syndrome in mice. Neuron 2007; 56: 955–962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Caraci F, Battaglia G, Sortino MA, Spampinato S, Molinaro G, Copani A et al. Metabotropic glutamate receptors in neurodegeneration/neuroprotection: still a hot topic? Neurochem Int 2012, e-pub ahead of print 25 January 2012 doi:10.1016/j.neuint.2012.01.017 (in press).

  138. Chuang SC, Zhao W, Bauchwitz R, Yan Q, Bianchi R, Wong RK . Prolonged epileptiform discharges induced by altered group I metabotropic glutamate receptor-mediated synaptic responses in hippocampal slices of a fragile X mouse model. J Neurosci 2005; 25: 8048–8055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N . Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci Lett 1993; 163: 53–57.

    Article  CAS  PubMed  Google Scholar 

  140. Liu XB, Munoz A, Jones EG . Changes in subcellular localization of metabotropic glutamate receptor subtypes during postnatal development of mouse thalamus. J Comp Neurol 1998; 395: 450–465.

    Article  CAS  PubMed  Google Scholar 

  141. Fatemi SH, Folsom TD, Kneeland RE, Liesch SB . Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism. Anat Rec 2011; 294: 1635–1645.

    Article  CAS  Google Scholar 

  142. Notenboom RG, Hampson DR, Jansen GH, van Rijen PC, van Veelen CW, van Nieuwenhuizen O et al. Up-regulation of hippocampal metabotropic glutamate receptor 5 in temporal lobe epilepsy patients. Brain 2006; 129: 96–107.

    Article  PubMed  Google Scholar 

  143. Price DL, Rockenstein E, Ubhi K, Phung V, MacLean-Lewis N, Askay D et al. Alterations in mGluR5 expression and signaling in Lewy body disease and in transgenic models of alpha-synucleinopathy—implications for excitotoxicity. PLoS One 2010; 5: e14020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Albasanz JL, Dalfo E, Ferrer I, Martin M . Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer’s disease and dementia with Lewy bodies correlates with stage of Alzheimer’s-disease-related changes. Neurobiol Dis 2005; 20: 685–693.

    Article  CAS  PubMed  Google Scholar 

  145. Ulus IH, Wurtman RJ . Metabotropic glutamate receptor agonists increase release of soluble amyloid precursor protein derivatives from rat brain cortical and hippocampal slices. J Pharmacol Exp Ther 1997; 281: 149–154.

    CAS  PubMed  Google Scholar 

  146. Malter JS, Ray BC, Westmark PR, Westmark CJ . Fragile X syndrome and Alzheimer’s disease: Another story about APP and beta-amyloid. Curr Alzheimer Res 2010; 7: 200–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Westmark CJ, Westmark PR, Malter JS . MPEP reduces seizure severity in Fmr-1 KO mice over expressing human abeta. Int J Clin Exp Pathol 2009; 3: 56–68.

    PubMed  Google Scholar 

  148. Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP . Suppression of two major fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 2005; 49: 1053–1066.

    Article  CAS  PubMed  Google Scholar 

  149. Westmark CJ, Westmark PR, Malter JS . Alzheimer’s disease and Down syndrome rodent models exhibit audiogenic seizures. J Alzheimers Dis 2010; 20: 1009–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. de Vrij FM, Levenga J, van der Linde HC, Koekkoek SK, De Zeeuw CI, Nelson DL et al. Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice. Neurobiol Dis 2008; 31: 127–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Michalon A, Sidorov M, Ballard TM, Ozmen L, Spooren W, Wettstein JG et al. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 2012; 74: 49–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mines MA, Jope RS . Glycogen synthase kinase-3: a promising therapeutic target for fragile x syndrome. Front Mol Neurosci 2011; 4: 35.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Hampson DR, Gholizadeh S, Pacey LK . Pathways to drug development for autism spectrum disorders. Clin Pharmacol Ther 2012; 91: 189–200.

    Article  CAS  PubMed  Google Scholar 

  154. Westmark PR, Shin HC, Westmark CJ, Soltaninassab SR, Reinke EK, Malter JS . Decoy mRNAs reduce beta-amyloid precursor protein mRNA in neuronal cells. Neurobiol Aging 2006; 27: 787–796.

    Article  CAS  PubMed  Google Scholar 

  155. Delay C, Mandemakers W, Hebert SS . MicroRNAs in Alzheimer’s disease. Neurobiol Dis 2012; 46: 285–290.

    Article  CAS  PubMed  Google Scholar 

  156. Rodriguez-Lebron E, Gouvion CM, Moore SA, Davidson BL, Paulson HL . Allele-specific RNAi mitigates phenotypic progression in a transgenic model of Alzheimer’s disease. Mol Ther 2009; 17: 1563–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Huse JT, Pijak DS, Leslie GJ, Lee VM, Doms RW . Maturation and endosomal targeting of beta-site amyloid precursor protein-cleaving enzyme. the Alzheimer’s disease beta-secretase. J Biol Chem 2000; 275: 33729–33737.

    Article  CAS  PubMed  Google Scholar 

  158. Kinoshita A, Fukumoto H, Shah T, Whelan CM, Irizarry MC, Hyman BT . Demonstration by FRET of BACE interaction with the amyloid precursor protein at the cell surface and in early endosomes. J Cell Sci 2003; 116: 3339–3346.

    Article  CAS  PubMed  Google Scholar 

  159. Decker H, Jurgensen S, Adrover MF, Brito-Moreira J, Bomfim TR, Klein WL et al. N-methyl-D-aspartate receptors are required for synaptic targeting of Alzheimer’s toxic amyloid-beta peptide oligomers. J Neurochem 2010; 115: 1520–1529.

    Article  CAS  PubMed  Google Scholar 

  160. Resenberger UK, Winklhofer KF, Tatzelt J . Cellular prion protein mediates toxic signaling of amyloid beta. Neurodegener Dis 2011; 10: 298–300.

    Article  CAS  PubMed  Google Scholar 

  161. Zhang Y, Kurup P, Xu J, Anderson GM, Greengard P, Nairn AC et al. Reduced levels of the tyrosine phosphatase STEP block beta amyloid-mediated GluA1/GluA2 receptor internalization. J Neurochem 2011; 119: 664–672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kotecha SA, Jackson MF, Al-Mahrouki A, Roder JC, Orser BA, MacDonald JF . Co-stimulation of mGluR5 and N-methyl-D-aspartate receptors is required for potentiation of excitatory synaptic transmission in hippocampal neurons. J Biol Chem 2003; 278: 27742–27749.

    Article  CAS  PubMed  Google Scholar 

  163. Jia Z, Lu Y, Henderson J, Taverna F, Romano C, Abramow-Newerly W et al. Selective abolition of the NMDA component of long-term potentiation in mice lacking mGluR5. Learn Mem 1998; 5: 331–343.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Soba P, Eggert S, Wagner K, Zentgraf H, Siehl K, Kreger S et al. Homo- and heterodimerization of APP family members promotes intercellular adhesion. EMBO J 2005; 24: 3624–3634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ikonomovic MD, Uryu K, Abrahamson EE, Ciallella JR, Trojanowski JQ, Lee VM et al. Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol 2004; 190: 192–203.

    Article  CAS  PubMed  Google Scholar 

  166. Assini A, Cammarata S, Vitali A, Colucci M, Giliberto L, Borghi R et al. Plasma levels of amyloid beta-protein 42 are increased in women with mild cognitive impairment. Neurology 2004; 63: 828–831.

    Article  CAS  PubMed  Google Scholar 

  167. Bibl M, Esselmann H, Mollenhauer B, Weniger G, Welge V, Liess M et al. Blood-based neurochemical diagnosis of vascular dementia: A pilot study. J Neurochem 2007; 103: 467–474.

    Article  CAS  PubMed  Google Scholar 

  168. Olsson A, Csajbok L, Ost M, Hoglund K, Nylen K, Rosengren L et al. Marked increase of beta-amyloid(1–42) and amyloid precursor protein in ventricular cerebrospinal fluid after severe traumatic brain injury. J Neurol 2004; 251: 870–876.

    Article  CAS  PubMed  Google Scholar 

  169. Bush AI, Whyte S, Thomas LD, Williamson TG, Van Tiggelen CJ, Currie J et al. An abnormality of plasma amyloid protein precursor in Alzheimer’s disease. Ann Neurol 1992; 32: 57–65.

    Article  CAS  PubMed  Google Scholar 

  170. Suzuki A, Takashima S, Mizuguchi M, Kato M, Kunishita T, Tabira T . High expression on Kunitz-type protease inhibitor-containing substances in the cerebral vessels of patients with Down syndrome. Tohoku J Exp Med 1994; 174: 181–187.

    Article  CAS  PubMed  Google Scholar 

  171. Conti E, Galimberti G, Piazza F, Raggi ME, Ferrarese C . Increased soluble APPα, Aβ 1–42, and anti-Aβ 1–42 antibodies in plasma from Down syndrome patients. Alzheimer Dis Assoc Disord 2010; 24: 96–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Dr Pamela Westmark and the reviewers for critical examination of the manuscript. Dr Westmark’s research has been funded by FRAXA Research Foundation, The Alzheimer’s Drug Discovery Foundation, Lundbeck Research USA, Inc. and Merz Pharmaceuticals GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J Westmark.

Ethics declarations

Competing interests

The author declares no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westmark, C. What’s hAPPening at synapses? The role of amyloid β-protein precursor and β-amyloid in neurological disorders. Mol Psychiatry 18, 425–434 (2013). https://doi.org/10.1038/mp.2012.122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.122

Keywords

This article is cited by

Search

Quick links