Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Perceptual consequences of centre–surround antagonism in visual motion processing

Abstract

Centre–surround receptive field organization is a ubiquitous property in mammalian visual systems, presumably tailored for extracting image features that are differentially distributed over space1. In visual motion, this is evident as antagonistic interactions between centre and surround regions of the receptive fields of many direction-selective neurons in visual cortex2,3,4,5,6. In a series of psychophysical experiments we make the counterintuitive observation that increasing the size of a high-contrast moving pattern renders its direction of motion more difficult to perceive and reduces its effectiveness as an adaptation stimulus. We propose that this is a perceptual correlate of centre–surround antagonism, possibly within a population of neurons in the middle temporal visual area. The spatial antagonism of motion signals observed at high contrast gives way to spatial summation as contrast decreases. Evidently, integration of motion signals over space depends crucially on the visibility of those signals, thereby allowing the visual system to register motion information efficiently and adaptively.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of size and contrast on motion perception.
Figure 2: Results from added-noise, random-dot and eccentricity experiments.
Figure 3: Results from phase-shift and isoluminant-motion experiments.
Figure 4: Effects of stimulus size and contrast on the MAE strength for three subjects, A.P. (top), R.B. (middle) and D.T. (bottom).

References

  1. Allman, J., Miezin, F. & McGuinness, E. Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local–global comparisons in visual neurons. Annu. Rev. Neurosci. 8, 407–430 (1985)

    Article  CAS  Google Scholar 

  2. Allman, J., Miezin, F. & McGuinness, E. Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception 14, 105–126 (1985)

    Article  CAS  Google Scholar 

  3. Born, R. T. & Tootell, R. B. Segregation of global and local motion processing in primate middle temporal visual area. Nature 357, 497–499 (1992)

    Article  ADS  CAS  Google Scholar 

  4. Eifuku, S. & Wurtz, R. H. Response to motion in extrastriate area MSTl: Center–surround interactions. J. Neurophysiol. 80, 282–296 (1998)

    Article  CAS  Google Scholar 

  5. Jones, H. E., Grieve, K. L., Wang, W. & Sillito, A. M. Surround suppression in primate V1. J. Neurophysiol. 86, 2011–2028 (2001)

    Article  CAS  Google Scholar 

  6. Raiguel, S. E., van Hulle, M. M., Xiao, D. K., Marcar, V. L. & Orban, G. A. Shape and spatial distribution of receptive fields and antagonistic motion surround in the middle temporal area (V5) of the macaque. Eur. J. Neurosci. 7, 2064–2082 (1995)

    Article  CAS  Google Scholar 

  7. Born, R. T., Groh, J. M., Zhao, R. & Lukasewycz, S. J. Segregation of object and background motion in visual area MT: Effects of microstimulation on eye movements. Neuron 26, 725–734 (2000)

    Article  CAS  Google Scholar 

  8. Nakayama, K. & Loomis, J. M. Optical velocity patterns, velocity-sensitive neurons, and space perception: A hypothesis. Perception 3, 63–80 (1974)

    Article  CAS  Google Scholar 

  9. Gautama, T. & Van Hulle, M. M. Function of center–surround antagonism for motion in visual area MT/V5: A modeling study. Vision Res. 41, 3917–3930 (2001)

    Article  CAS  Google Scholar 

  10. Buracas, G. T. & Albright, T. D. Contribution of area MT to perception of three-dimensional shape: Computational study. Vision Res. 361, 869–887 (1996)

    Article  Google Scholar 

  11. Westheimer, G. Spatial interaction in human cone vision. J. Physiol. (Lond.) 190, 139–154 (1967)

    Article  CAS  Google Scholar 

  12. Anderson, S. J. & Burr, D. C. Spatial summation properties of directionally sensitive mechanisms in human vision. J. Opt. Soc. Am. A 8, 1330–1339 (1991)

    Article  ADS  CAS  Google Scholar 

  13. Watson, A. B. & Turano, K. The optimal motion stimulus. Vision Res. 35, 325–336 (1995)

    Article  CAS  Google Scholar 

  14. Kapadia, M. K., Westheimer, G. & Gilbert, C. D. Dynamics of spatial summation in primary visual cortex of alert monkeys. Proc. Natl Acad. Sci. USA 96, 12073–12078 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Levitt, J. B. & Lund, J. S. Contrast dependence of contextual effects in primate visual cortex. Nature 387, 73–76 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Sceniak, M. P., Ringach, D. L., Hawken, M. J. & Shapley, R. Contrast's effect on spatial summation by macaque V1 neurons. Nature Neurosci. 2, 733–739 (1999)

    Article  CAS  Google Scholar 

  17. Albright, T. D. Direction and orientation selectivity of neurons in visual area MT of the macaque. J. Neurophysiol. 52, 1106–1130 (1984)

    Article  CAS  Google Scholar 

  18. Nakayama, K. & Silverman, G. H. Detection and discrimination of sinusoidal grating displacements. J. Opt. Soc. Am. A 2, 267–274 (1985)

    Article  ADS  CAS  Google Scholar 

  19. Dobkins, K. R. & Albright, T. D. in High-level Motion Processing (ed. Watanabe, T.) 53–94 (MIT Press, Cambridge, Massachusetts, 1998)

    Google Scholar 

  20. Huk, A. C., Ress, D. & Heeger, D. J. Neuronal basis of the motion aftereffect reconsidered. Neuron 32, 161–172 (2001)

    Article  CAS  Google Scholar 

  21. Murakami, I. & Shimojo, S. Modulation of motion aftereffect by surround motion and its dependence on stimulus size and eccentricity. Vision Res. 35, 1835–1844 (1995)

    Article  CAS  Google Scholar 

  22. Sachtler, W. L. & Zaidi, Q. Effect of spatial configuration on motion aftereffects. J. Opt. Soc. Am. A 10, 1433–1449 (1993)

    Article  ADS  CAS  Google Scholar 

  23. Verghese, P. & Stone, L. S. Perceived visual speed constrained by image segmentation. Nature 381, 161–163 (1996)

    Article  ADS  CAS  Google Scholar 

  24. Derrington, A. M. & Goddard, P. A. Failure of motion discrimination at high contrasts: Evidence for saturation. Vision Res. 29, 1767–1776 (1989)

    Article  CAS  Google Scholar 

  25. Gegenfurtner, K. R. et al. Chromatic properties of neurons in macaque MT. Vis. Neurosci. 11, 455–466 (1994)

    Article  CAS  Google Scholar 

  26. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis of visual motion: A comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992)

    Article  CAS  Google Scholar 

  27. Cavanagh, P., MacLeod, D. I. & Anstis, S. M. Equiluminance: Spatial and temporal factors and the contribution of blue-sensitive cones. J. Opt. Soc. Am. A 4, 1428–1438 (1987)

    Article  ADS  CAS  Google Scholar 

  28. Sclar, G., Maunsell, J. H. & Lennie, P. Coding of image contrast in central visual pathways of the macaque monkey. Vision Res. 30, 1–10 (1990)

    Article  CAS  Google Scholar 

  29. Rees, G., Friston, K. & Koch, C. A direct quantitative relationship between the functional properties of human and macaque V5. Nature Neurosci. 3, 716–723 (2000)

    Article  CAS  Google Scholar 

  30. Kastner, S. et al. Modulation of sensory suppression: Implications for receptive field sizes in the human visual cortex. J. Neurophysiol. 86, 1398–1411 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Schall, B. Borghuis, S. Shorter-Jacobi and A. Panduranga for comments on the experiments and manuscript. This work was supported by a grant from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duje Tadin.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadin, D., Lappin, J., Gilroy, L. et al. Perceptual consequences of centre–surround antagonism in visual motion processing. Nature 424, 312–315 (2003). https://doi.org/10.1038/nature01800

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01800

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing