Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Summing up the noise in gene networks

Abstract

Random fluctuations in genetic networks are inevitable as chemical reactions are probabilistic and many genes, RNAs and proteins are present in low numbers per cell. Such ‘noise’ affects all life processes and has recently been measured using green fluorescent protein (GFP). Two studies show that negative feedback suppresses noise, and three others identify the sources of noise in gene expression. Here I critically analyse these studies and present a simple equation that unifies and extends both the mathematical and biological perspectives.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schroedinger, E. What is Life? (Cambridge Univ. Press, Cambridge, 1944)

    Google Scholar 

  2. Novick, A. & Weiner, M. Enzyme induction as an all-or-none phenomenon. Proc. Natl Acad. Sci. USA 43, 553–566 (1957)

    Article  ADS  CAS  Google Scholar 

  3. Maloney, P. C. & Rotman, B. Distribution of suboptimally induced β-d-galactosidase in Escherichia coli. The enzyme content of individual cells. J. Mol. Biol 73, 77–91 (1973)

    Article  CAS  Google Scholar 

  4. Løbner-Olesen, A. Distribution of minichromosomes in individual Escherichia coli cells: implications for replication control. EMBO J. 18, 1712–1721 (1999)

    Article  Google Scholar 

  5. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000)

    Article  ADS  CAS  Google Scholar 

  6. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002)

    Article  CAS  Google Scholar 

  7. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 183–186 (2002)

    Article  Google Scholar 

  8. Blake, W. J., Kærn, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Xie, X. S. Single-molecule approach to dispersed kinetics and dynamic disorder: Probing conformational fluctuation and enzymatic dynamics. J. Chem. Phys. 117, 11024–11032 (2002)

    Article  ADS  Google Scholar 

  10. Zwanzig, R. Nonequilibrium Statistical Mechanics (Oxford Univ. Press, New York, 2001)

    MATH  Google Scholar 

  11. van Kampen, N. G. Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1992)

    MATH  Google Scholar 

  12. Elf, J., Paulsson, J., Berg, O. G. & Ehrenberg, M. Near-critical phenomena in intracellular metabolite pools. Biophys. J. 84, 154–170 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Keizer, K. Statistical Thermodynamics of Nonequilibrium Processes (Springer, Berlin, 1987)

    Book  Google Scholar 

  14. Elf, J. & Ehrenberg, M. Fast evaluations of fluctuations in biochemical networks with the linear noise approximation. Genome Res. 13, 2475–2484 (2003)

    Article  CAS  Google Scholar 

  15. Kacser, H. & Burns, J. A. The control of flux. Symp. Soc. Exp. Biol. 27, 65–104 (1973)

    CAS  PubMed  Google Scholar 

  16. Westerhoff, H. V. & Van Dam, K. Thermodynamics and Control of Biological Free Energy Transduction (Elsevier, Amsterdam, 1987)

    Google Scholar 

  17. Savageau, M. A. Biochemical Systems Analysis (Addison-Wesley, Reading, 1976)

    MATH  Google Scholar 

  18. Savageau, M. A. Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems. Nature 229, 542–544 (1971)

    Article  ADS  CAS  Google Scholar 

  19. Paulsson, J. & Ehrenberg, M. Noise in a minimal regulatory network: plasmid copy number control. Q. Rev. Biophys. 34, 1–59 (2001)

    Article  CAS  Google Scholar 

  20. Dogterom, M. & Leibler, S. Physical aspects of the growth and regulation of microtubule structures. Phys. Rev. Lett. 70, 1347–1350 (1993)

    Article  ADS  CAS  Google Scholar 

  21. Berg, O. G., Paulsson, J. & Ehrenberg, M. Fluctuations and quality of control in biological cells: zero-order ultrasensitivity reinvestigated. Biophys. J. 79, 1228–1236 (2000)

    Article  CAS  Google Scholar 

  22. Rigney, D. R. & Schieve, W. C. Stochastic model of linear, continuous protein-synthesis in bacterial populations. J. Theor. Biol. 69, 761–766 (1977)

    Article  CAS  Google Scholar 

  23. Berg, O. G. A model for statistical fluctuations of protein numbers in a microbial-population. J. Theor. Biol. 173, 307–320 (1978)

    Article  Google Scholar 

  24. McAdams, H. H. & Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl Acad. Sci. USA 94, 814–819 (1997)

    Article  ADS  CAS  Google Scholar 

  25. Paulsson, J., Berg, O. G. & Ehrenberg, M. Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. Proc. Natl Acad. Sci. USA 97, 7148–7153 (2000)

    Article  ADS  CAS  Google Scholar 

  26. Thattai, M. & van Oudenaarden, A. Intrinsic noise in gene regulatory networks. Proc. Natl Acad. Sci. USA 98, 8614–8619 (2001)

    Article  ADS  CAS  Google Scholar 

  27. Peccoud, J. & Ycart, B. Markovian modelling of gene-product synthesis. Theor. Popul. Biol. 48, 222–234 (1995)

    Article  Google Scholar 

  28. Kepler, T. B. & Elston, T. C. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J. 81, 3116–3136 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Sasai, M. & Wolynes, P. G. Stochastic gene expression as a many-body problem. Proc. Natl Acad. Sci. USA 100, 2374–2379 (2003)

    Article  ADS  CAS  Google Scholar 

  30. Singh, U. N. Polyribosomes and unstable messenger RNA: a stochastic model of protein synthesis. J. Theor. Biol. 25, 444–460 (1969)

    Article  CAS  Google Scholar 

  31. Swain, P. S., Elowitz, M. B. & Siggia, E. D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl Acad. Sci. USA 99, 12795–12800 (2002)

    Article  ADS  CAS  Google Scholar 

  32. Savageau, M. A. Comparison of classical and autogenous systems of regulation in inducible operons. Nature 252, 546–549 (1974)

    Article  ADS  CAS  Google Scholar 

  33. Thieffry, D., Huerta, A. M., Perez-Rueda, E. & Collado-Vides, J. From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. Bioessays 20, 433–440 (1998)

    Article  CAS  Google Scholar 

  34. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genet. 31, 64–68 (2002)

    Article  CAS  Google Scholar 

  35. Paulsson, J. Multileveled selection on plasmid replication. Genetics 161, 1373–1384 (2002)

    PubMed  PubMed Central  Google Scholar 

  36. Chattoraj, D. K. Control of plasmid DNA replication by iterons: no longer paradoxical. Mol. Microbiol. 37, 467–476 (2000)

    Article  CAS  Google Scholar 

  37. Vilar, J. M., Kueh, H. Y., Barkai, N. & Leibler, S. Mechanisms of noise-resistance in genetic oscillators. Proc. Natl Acad. Sci. USA 99, 5988–5992 (2002)

    Article  ADS  CAS  Google Scholar 

  38. Howard, M. & Rutenberg, A. D. Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys. Rev. Lett. 90, 128102 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Lewis-Thomas fellowship from Princeton University and by the Cambridge-MIT Institute. I thank A. Becskei, E. Cox, M. Ehrenberg, J. Elf, M. Elowitz, I. Golding, S. Leibler, A. Løbner-Olesen, C. Peterson, S. Sawai, P. Swain, M. Thattai and A. van Oudenaarden for discussions and comments on the manuscript. I also thank W. Blake, M. Kaern, C. Cantor and J. Collins for sharing unpublished data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Paulsson.

Ethics declarations

Competing interests

The author declares that he has no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004). https://doi.org/10.1038/nature02257

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02257

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing