Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A general mechanism for perceptual decision-making in the human brain

Abstract

Findings from single-cell recording studies suggest that a comparison of the outputs of different pools of selectively tuned lower-level sensory neurons may be a general mechanism by which higher-level brain regions compute perceptual decisions. For example, when monkeys must decide whether a noisy field of dots is moving upward or downward, a decision can be formed by computing the difference in responses between lower-level neurons sensitive to upward motion and those sensitive to downward motion1,2,3,4. Here we use functional magnetic resonance imaging and a categorization task in which subjects decide whether an image presented is a face or a house to test whether a similar mechanism is also at work for more complex decisions in the human brain and, if so, where in the brain this computation might be performed. Activity within the left dorsolateral prefrontal cortex is greater during easy decisions than during difficult decisions, covaries with the difference signal between face- and house-selective regions in the ventral temporal cortex, and predicts behavioural performance in the categorization task. These findings show that even for complex object categories, the comparison of the outputs of different pools of selectively tuned neurons could be a general mechanism by which the human brain computes perceptual decisions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental task.
Figure 2: FMRI data illustrating representation of sensory evidence in maximally face- and house-responsive voxels.
Figure 3: Brain regions showing a main effect of task difficulty: orange: easier (low noise proportion) > harder (high noise proportion); blue: harder > easier.
Figure 4: Perceptual decision-making in posterior DLPFC.

Similar content being viewed by others

References

  1. Shadlen, M. N. & Newsome, W. T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001)

    Article  CAS  Google Scholar 

  2. Kim, J. N. & Shadlen, M. N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nature Neurosci. 2, 176–185 (1999)

    Article  Google Scholar 

  3. Gold, J. I. & Shadlen, M. N. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5, 10–16 (2001)

    Article  Google Scholar 

  4. Ditterich, J., Mazurek, M. E. & Shadlen, M. N. Microstimulation of visual cortex affects the speed of perceptual decisions. Nature Neurosci. 6, 891–898 (2003)

    Article  CAS  Google Scholar 

  5. Newsome, W. T., Britten, K. H. & Movshon, J. A. Neuronal correlates of a perceptual decision. Nature 341, 52–54 (1989)

    Article  ADS  CAS  Google Scholar 

  6. Salzman, C. D., Britten, K. H. & Newsome, W. T. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346, 174–177 (1990)

    Article  ADS  CAS  Google Scholar 

  7. Schall, J. D. Neural basis of deciding, choosing and acting. Nature Rev. Neurosci. 2, 33–42 (2001)

    Article  CAS  Google Scholar 

  8. Romo, R. & Salinas, E. Flutter discrimination: neural codes, perception, memory and decision making. Nature Rev. Neurosci. 4, 203–218 (2003)

    Article  CAS  Google Scholar 

  9. Shadlen, M. N., Britten, K. H., Newsome, W. T. & Movshon, J. A. A computational analysis of the relationship between neuronal and behavioral responses to visual motion. J. Neurosci. 16, 1486–1510 (1996)

    Article  CAS  Google Scholar 

  10. Romo, R., Hernandez, A., Zainos, A. & Salinas, E. Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron 38, 649–657 (2003)

    Article  CAS  Google Scholar 

  11. Hernandez, A., Zainos, A. & Romo, R. Temporal evolution of a decision-making process in medial premotor cortex. Neuron 33, 959–972 (2002)

    Article  CAS  Google Scholar 

  12. Haxby, J. V. et al. The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J. Neurosci. 14, 6336–6353 (1994)

    Article  CAS  Google Scholar 

  13. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997)

    Article  CAS  Google Scholar 

  14. McCarthy, G., Puce, A., Gore, J. C. & Allison, T. Face-specific processing in the human fusiform gyrus. J. Cogn. Neurosci. 9, 605–610 (1997)

    Article  CAS  Google Scholar 

  15. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998)

    Article  ADS  CAS  Google Scholar 

  16. Ishai, A., Ungerleider, L. G., Martin, A., Schouten, J. L. & Haxby, J. V. Distributed representation of objects in the human ventral visual pathway. Proc. Natl Acad. Sci. USA 96, 9379–9384 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Logothetis, N. K. & Wandell, B. A. Interpreting the BOLD Signal. Annu. Rev. Physiol. 66, 735–769 (2004)

    Article  CAS  Google Scholar 

  19. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci. 3, 201–215 (2002)

    Article  CAS  Google Scholar 

  20. Pessoa, L., Kastner, S. & Ungerleider, L. G. Neuroimaging studies of attention: from modulation of sensory processing to top-down control. J. Neurosci. 23, 3990–3998 (2003)

    Article  CAS  Google Scholar 

  21. Petrides, M., Alivisatos, B., Evans, A. C. & Meyer, E. Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proc. Natl Acad. Sci. USA 90, 873–877 (1993)

    Article  ADS  CAS  Google Scholar 

  22. Koechlin, E., Ody, C. & Kouneiher, F. The architecture of cognitive control in the human prefrontal cortex. Science 302, 1181–1185 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Petrides, M. Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey. Behav. Brain Res. 16, 95–101 (1985)

    Article  CAS  Google Scholar 

  24. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001)

    Article  CAS  Google Scholar 

  25. Platt, M. L. & Glimcher, P. W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999)

    Article  ADS  CAS  Google Scholar 

  26. Sharma, J., Dragoi, V., Tenenbaum, J. B., Miller, E. K. & Sur, M. V1 neurons signal acquisition of an internal representation of stimulus location. Science 300, 1758–1763 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Sugrue, L. P., Corrado, G. S. & Newsome, W. T. Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Rainer, G. & Miller, E. K. Effects of visual experience on the representation of objects in the prefrontal cortex. Neuron 27, 179–189 (2000)

    Article  CAS  Google Scholar 

  29. Woolrich, M. W., Ripley, B. D., Brady, M. & Smith, S. M. Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14, 1370–1386 (2001)

    Article  CAS  Google Scholar 

  30. Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001)

    Article  ADS  CAS  Google Scholar 

  31. Heekeren, H. R., Marrett, S., Bandettini, P. A. & Ungerleider, L. G. Neural correlates of a decision in human dorsolateral prefrontal cortex. Soc. Neurosci. Abs Program No. 16.3 (2002); 〈http://sfn.scholarone.com/itin2002/main.html?new_page_id=126&abstract_id=13054&p_num=16.3&is_tech=020.01.2004%2006:24:56

Download references

Acknowledgements

We thank D. Ruff and I. Wartenburger for technical help and manuscript preparation, and M. Beauchamp, R. Desimone, A. Ishai and A. Martin for comments on the manuscript. This study was supported by the National Institute of Mental Health (NIMH) Intramural Research Program, the Deutsche Forschungsgemeinschaft (DFG, Emmy Noether Programme) and the Bundesministerium für Bildung und Forschung (BMBF, Berlin NeuroImaging Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Heekeren.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Data

Behavioral data (percent correct, response time) during fMRI experiment. Description and results of control analyses. (PDF 21 kb)

Supplementary Tables

Three tables summarizing the brain regions 1) showing a greater response to suprathreshold than to perithreshold stimuli, 2) showing a greater response to perithreshold than to suprathreshold stimuli, and 3) showing significant correlation with absolute difference between signals in FACE and HOUSE (|FACE(t) – HOUSE(t)|). (PDF 178 kb)

Supplementary Figures

Three figures illustrating 1) time course data for a representative subject and the group, 2) statistical maps of main effect of task difficulty in 3 subjects, and 3) correlation between changes in activity in DLPFC with changes in activity in face- and house-responsive regions as well as the difference signal. (PDF 996 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heekeren, H., Marrett, S., Bandettini, P. et al. A general mechanism for perceptual decision-making in the human brain. Nature 431, 859–862 (2004). https://doi.org/10.1038/nature02966

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02966

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing