Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organelle identity and the signposts for membrane traffic

Abstract

Eukaryotic cells have systems of internal organelles to synthesize lipids and membrane proteins, to release secreted proteins, to take up nutrients and to degrade membrane-bound and internalized molecules. Proteins and lipids move from organelle to organelle using transport vesicles. The accuracy of this traffic depends upon organelles being correctly recognized. In general, organelles are identified by the activated GTPases and specific lipid species that they display. These short-lived determinants provide organelles with an identity that is both unique and flexible. Recent studies have helped to establish how cells maintain and restrict these determinants and explain how this system is exploited by invading pathogens.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the steps of vesicle transport.
Figure 2: Recruitment of the Rab and Arf family GTPases to membranes.
Figure 3: Location of GTPases to specific organelles.
Figure 4: Location of phosphoinositides to specific organelles.
Figure 5: Identity theft by invading pathogens.

Similar content being viewed by others

References

  1. Bonifacino, J.S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    CAS  PubMed  Google Scholar 

  2. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).

    Article  CAS  Google Scholar 

  3. Vetter, I.R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    ADS  CAS  PubMed  Google Scholar 

  4. Pereira-Leal, J.B. & Seabra, M.C. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 313, 889–901 (2001).

    CAS  PubMed  Google Scholar 

  5. Pfeffer, S.R. Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol. 11, 487–491 (2001).

    CAS  PubMed  Google Scholar 

  6. Matanis, T. et al. Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein–dynactin motor complex. Nature Cell Biol. 4, 986–992 (2002).

    CAS  PubMed  Google Scholar 

  7. Short, B., Preisinger, C., Schaletzky, J., Kopajtich, R. & Barr, F.A. The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr. Biol. 12, 1792–1795 (2002).

    CAS  PubMed  Google Scholar 

  8. Fridmann-Sirkis, Y., Siniossoglou, S. & Pelham, H.R. TMF is a golgin that binds Rab6 and influences Golgi morphology. BMC Cell Biol. 5, 18 (2004).

    PubMed  PubMed Central  Google Scholar 

  9. Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494–498 (1998).

    ADS  CAS  PubMed  Google Scholar 

  10. Seabra, M.C. & Coudrier, E. Rab GTPases and myosin motors in organelle motility. Traffic 5, 393–399 (2004).

    CAS  PubMed  Google Scholar 

  11. Pfeffer, S. & Aivazian, D. Targeting Rab GTPases to distinct membrane compartments. Nature Rev. Mol. Cell Biol. 5, 886–896 (2004).

    CAS  Google Scholar 

  12. Seabra, M.C. & Wasmeier, C. Controlling the location and activation of Rab GTPases. Curr. Opin. Cell Biol. 16, 451–457 (2004).

    CAS  PubMed  Google Scholar 

  13. Chavrier, P. et al. Hypervariable C-terminal domain of rab proteins acts as a targeting signal. Nature 353, 769–772 (1991).

    ADS  CAS  PubMed  Google Scholar 

  14. Ali, B.R., Wasmeier, C., Lamoreux, L., Strom, M. & Seabra, M.C. Multiple regions contribute to membrane targeting of Rab GTPases. J. Cell Sci. 117, 6401–6412 (2004).

    CAS  PubMed  Google Scholar 

  15. Calero, M. & Collins, R.N. Saccharomyces cerevisiae Pra1p/Yip3p interacts with Yip1p and Rab proteins. Biochem. Biophys. Res. Commun. 290, 676–681 (2002).

    CAS  PubMed  Google Scholar 

  16. Figueroa, C., Taylor, J. & Vojtek, A.B. Prenylated Rab acceptor protein is a receptor for prenylated small GTPases. J. Biol. Chem. 276, 28219–28225 (2001).

    CAS  PubMed  Google Scholar 

  17. Sivars, U., Aivazian, D. & Pfeffer, S.R. Yip3 catalyses the dissociation of endosomal Rab-GDI complexes. Nature 425, 856–859 (2003).

    ADS  CAS  PubMed  Google Scholar 

  18. Hutt, D.M., Da-Silva, L.F., Chang, L.H., Prosser, D.C. & Ngsee, J.K. PRA1 inhibits the extraction of membrane-bound rab GTPase by GDI1. J.Biol. Chem. 275, 18511–18519 (2000).

    CAS  PubMed  Google Scholar 

  19. Shakoori, A. et al. Identification of a five-pass transmembrane protein family localizing in the Golgi apparatus and the ER. Biochem. Biophys. Res. Commun. 312, 850–857 (2003).

    CAS  PubMed  Google Scholar 

  20. Geng, J., Shin, M.E., Gilbert, P.M., Collins, R.N. & Burd, C.G. Saccharomyces cerevisiae Rab-GDI displacement factor ortholog Yip3p forms distinct complexes with the Ypt1 Rab GTPase and the reticulon Rtn1p. Eukaryot. Cell 4, 1166–1174 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Heidtman, M., Chen, C.Z., Collins, R.N. & Barlowe, C. A role for Yip1p in COPII vesicle biogenesis. J. Cell Biol. 163, 57–69 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Barrowman, J., Wang, W., Zhang, Y. & Ferro-Novick, S. The Yip1p.Yif1p complex is required for the fusion competence of endoplasmic reticulum-derived vesicles. J. Biol. Chem. 278, 19878–19884 (2003).

    CAS  PubMed  Google Scholar 

  23. Munro, S. Organelle identity and the targeting of peripheral membrane proteins. Curr. Opin. Cell Biol. 14, 506–514 (2002).

    CAS  PubMed  Google Scholar 

  24. Munro, S. Organelle identity and the organization of membrane traffic. Nature Cell Biol. 6, 469–472 (2004).

    CAS  PubMed  Google Scholar 

  25. Ortiz, D., Medkova, M., Walch-Solimena, C. & Novick, P. Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J. Cell Biol. 157, 1005–1015 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, W. & Ferro-Novick, S. A Ypt32p exchange factor is a putative effector of Ypt1p. Mol. Biol. Cell 13, 3336–3343 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sato, M. et al. Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nature Cell Biol. 7, 559–569 (2005).

    CAS  PubMed  Google Scholar 

  28. Lippe, R., Miaczynska, M., Rybin, V., Runge, A. & Zerial, M. Functional synergy between Rab5 effector Rabaptin-5 and exchange factor Rabex-5 when physically associated in a complex. Mol. Biol. Cell 12, 2219–2228 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Haas, A.K., Fuchs, E., Kopajtich, R. & Barr, F.A. A GTPase-activating protein controls Rab5 function in endocytic trafficking. Nature Cell Biol. 7, 887–993 (2005).

    CAS  PubMed  Google Scholar 

  30. De Antoni, A., Schmitzova, J., Trepte, H.H., Gallwitz, D. & Albert, S. Significance of GTP hydrolysis in Ypt1p-regulated endoplasmic reticulum to Golgi transport revealed by the analysis of two novel Ypt1-GAPs. J. Biol. Chem. 277, 41023–41031 (2002).

    CAS  PubMed  Google Scholar 

  31. Lafourcade, C., Galan, J.M., Gloor, Y., Haguenauer-Tsapis, R. & Peter, M. The GTPase-activating enzyme Gyp1p is required for recycling of internalized membrane material by inactivation of the Rab/Ypt GTPase Ypt1p. Mol. Cell. Biol. 24, 3815–3826 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, M.C., Miller, E.A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004).

    CAS  PubMed  Google Scholar 

  33. Gillingham, A.K., Tong, A.H., Boone, C. & Munro, S. The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi. J. Cell Biol. 167, 281–292 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Donaldson, J.G., Honda, A. & Weigert, R. Multiple activities for Arf1 at the Golgi complex. Biochim. Biophys. Acta 1744, 364–373 (2005).

    CAS  PubMed  Google Scholar 

  35. Krauss, M. et al. ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Iγ. J. Cell Biol. 162, 113–124 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Setty, S.R., Shin, M.E., Yoshino, A., Marks, M.S. & Burd, C.G. Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3. Curr. Biol. 13, 401–404 (2003).

    CAS  PubMed  Google Scholar 

  37. Panic, B., Whyte, J.R. & Munro, S. The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr. Biol. 13, 405–410 (2003).

    CAS  PubMed  Google Scholar 

  38. Pasqualato, S., Renault, L. & Cherfils, J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for ‘front-back’ communication. EMBO Rep. 3, 1035–1041 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Goldberg, J. Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237–248 (1998).

    CAS  PubMed  Google Scholar 

  40. Robert, C.H., Cherfils, J., Mouawad, L. & Perahia, D. Integrating three views of Arf1 activation dynamics. J. Mol. Biol. 337, 969–983 (2004).

    CAS  PubMed  Google Scholar 

  41. Jackson, C.L. & Casanova, J.E. Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol. 10, 60–67 (2000).

    CAS  PubMed  Google Scholar 

  42. Garcia-Mata, R. & Sztul, E. The membrane-tethering protein p115 interacts with GBF1, an ARF guanine-nucleotide-exchange factor. EMBO Rep. 4, 320–325 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chantalat, S. et al. A novel Golgi membrane protein is a partner of the ARF exchange factors Gea1p and Gea2p. Mol. Biol. Cell 14, 2357–2371 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Chantalat, S. et al. The Arf activator Gea2p and the P-type ATPase Drs2p interact at the Golgi in Saccharomyces cerevisiae. J. Cell Sci. 117, 711–722 (2004).

    CAS  PubMed  Google Scholar 

  45. Donaldson, J.G. & Jackson, C.L. Regulators and effectors of the ARF GTPases. Curr. Opin. Cell Biol. 12, 475–482 (2000).

    CAS  PubMed  Google Scholar 

  46. Gommel, D.U. et al. Recruitment to Golgi membranes of ADP-ribosylation factor 1 is mediated by the cytoplasmic domain of p23. EMBO J. 20, 6751–6760 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Honda, A., Al-Awar, O.S., Hay, J.C. & Donaldson, J.G. Targeting of Arf-1 to the early Golgi by membrin, an ER-Golgi SNARE. J. Cell Biol. 168, 1039–1051 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Behnia, R., Panic, B., Whyte, J.R. & Munro, S. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nature Cell Biol. 6, 405–413 (2004).

    CAS  PubMed  Google Scholar 

  49. Setty, S.R., Strochlic, T.I., Tong, A.H., Boone, C. & Burd, C.G. Golgi targeting of ARF-like GTPase Arl3p requires its Nα-acetylation and the integral membrane protein Sys1p. Nature Cell Biol. 6, 414–419 (2004).

    CAS  PubMed  Google Scholar 

  50. Liu, W., Duden, R., Phair, R.D. & Lippincott-Schwartz, J. ArfGAP1 dynamics and its role in COPI coat assembly on Golgi membranes of living cells. J. Cell Biol. 168, 1053–1063 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bigay, J., Casella, J.F., Drin, G., Mesmin, B. & Antonny, B. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J. 24, 2244–2253 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. De Matteis, M.A. & Godi, A. PI-loting membrane traffic. Nature Cell Biol. 6, 487–492 (2004).

    CAS  PubMed  Google Scholar 

  53. Wenk, M.R. & De Camilli, P. Protein–lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc. Natl Acad. Sci. USA 101, 8262–8269 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stenmark, H., Aasland, R. & Driscoll, P.C. The phosphatidylinositol 3-phosphate-binding FYVE finger. FEBS Lett. 513, 77–84 (2002).

    CAS  PubMed  Google Scholar 

  55. Ellson, C.D., Andrews, S., Stephens, L.R. & Hawkins, P.T. The PX domain: a new phosphoinositide-binding module. J. Cell Sci. 115, 1099–1105 (2002).

    CAS  PubMed  Google Scholar 

  56. Efe, J.A., Botelho, R.J. & Emr, S.D. The Fab1 phosphatidylinositol kinase pathway in the regulation of vacuole morphology. Curr. Opin. Cell Biol. 17, 402–408 (2005).

    CAS  PubMed  Google Scholar 

  57. Friant, S. et al. Ent3p Is a PtdIns(3,5)P2 effector required for protein sorting to the multivesicular body. Dev. Cell 5, 499–511 (2003).

    CAS  PubMed  Google Scholar 

  58. Dove, S.K. et al. Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J. 23, 1922–1933 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Levine, T.P. & Munro, S. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr. Biol. 12, 695–704 (2002).

    CAS  PubMed  Google Scholar 

  60. Wang, Y.J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310 (2003).

    CAS  PubMed  Google Scholar 

  61. Balla, A., Tuymetova, G., Tsiomenko, A., Varnai, P. & Balla, T. A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. Mol.Biol. Cell 16, 1282–1295 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shin, H.W. & Nakayama, K. Dual control of membrane targeting by PtdIns(4)P and ARF. Trends Biochem. Sci. 29, 513–515 (2004).

    CAS  PubMed  Google Scholar 

  63. Honing, S. et al. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell 18, 519–531 (2005).

    PubMed  Google Scholar 

  64. Yin, H.L. & Janmey, P.A. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 65, 761–789 (2003).

    CAS  PubMed  Google Scholar 

  65. Caroni, P. Actin cytoskeleton regulation through modulation of PI(4,5)P2 rafts. EMBO J. 20, 4332–4336 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. van Rheenen, J., Achame, E. M., Janssen, H., Calafat, J. & Jalink, K. PIP2 signaling in lipid domains: a critical re-evaluation. EMBO J. 24, 1664–1673 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Murray, J.T., Panaretou, C., Stenmark, H., Miaczynska, M. & Backer, J.M. Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic 3, 416–427 (2002).

    CAS  PubMed  Google Scholar 

  68. Kihara, A., Noda, T., Ishihara, N. & Ohsumi, Y. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152, 519–530 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Stefan, C.J., Audhya, A. & Emr, S.D. The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol. Biol. Cell 13, 542–557 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Roy, A. & Levine, T.P. Multiple pools of phosphatidylinositol 4-phosphate detected using the pleckstrin homology domain of Osh2p. J. Biol. Chem. 279, 44683–44689 (2004).

    CAS  PubMed  Google Scholar 

  71. Faulhammer, F. et al. Cell growth-dependent coordination of lipid signaling and glycosylation is mediated by interactions between Sac1p and Dpm1p. J. Cell Biol. 168, 185–191 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ivetac, I. et al. The type Iα inositol polyphosphate 4-phosphatase generates and terminates phosphoinositide 3-kinase signals on endosomes and the plasma membrane. Mol. Biol. Cell 16, 2218–2233 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Munro, S., The Golgi apparatus: defining the identity of Golgi membranes. Curr. Opin. Cell Biol. 17, 395–401 (2005).

    CAS  PubMed  Google Scholar 

  74. Murray, D. & Honig, B. Electrostatic control of the membrane targeting of C2 domains. Mol. Cell 9, 145–154 (2002).

    CAS  PubMed  Google Scholar 

  75. Natarajan, P., Wang, J., Hua, Z. & Graham, T.R. Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function. Proc. Natl Acad. Sci. USA 101, 10614–10619 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pomorski, T. et al. Drs2p-related P-type ATPases Dnf1p and Dnf2p are required for phospholipid translocation across the yeast plasma membrane and serve a role in endocytosis. Mol. Biol. Cell 14, 1240–1254 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).

    ADS  CAS  PubMed  Google Scholar 

  78. Bijlmakers, M.J. & Marsh, M. The on-off story of protein palmitoylation. Trends Cell Biol. 13, 32–42 (2003).

    CAS  PubMed  Google Scholar 

  79. Smotrys, J.E. & Linder, M.E. Palmitoylation of intracellular signaling proteins: regulation and function. Annu. Rev. Biochem. 73, 559–587 (2004).

    CAS  PubMed  Google Scholar 

  80. Drenan, R.M. et al. Palmitoylation regulates plasma membrane-nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family. J. Cell Biol. 169, 623–633 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307, 1746–1752 (2005).

    ADS  CAS  PubMed  Google Scholar 

  82. Salcedo, S.P. & Holden, D.W. Bacterial interactions with the eukaryotic secretory pathway. Curr. Opin. Microbiol. 8, 92–98 (2005).

    CAS  PubMed  Google Scholar 

  83. Pizarro-Cerda, J. & Cossart, P. Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nature Cell Biol. 6, 1026–1033 (2004).

    CAS  PubMed  Google Scholar 

  84. Meresse, S. et al. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nature Cell Biol. 1, E183–E188 (1999).

    CAS  PubMed  Google Scholar 

  85. Buttner, D. & Bonas, U. Port of entry — the type III secretion translocon. Trends Microbiol. 10, 186–192 (2002).

    CAS  PubMed  Google Scholar 

  86. Zhou, D. & Galan, J. Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect. 3, 1293–1298 (2001).

    CAS  PubMed  Google Scholar 

  87. Gouin, E., Welch, M.D. & Cossart, P. Actin-based motility of intracellular pathogens. Curr. Opin. Microbiol. 8, 35–45 (2005).

    CAS  PubMed  Google Scholar 

  88. Via, L.E. et al. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J. Biol. Chem. 272, 13326–13331 (1997).

    CAS  PubMed  Google Scholar 

  89. Vergne, I. et al. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 102, 4033–4038 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hernandez, L.D., Hueffer, K., Wenk, M.R. & Galan, J.E. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304, 1805–1807 (2004).

    ADS  CAS  PubMed  Google Scholar 

  91. Roy, C.R. Bacterial subversion of the host secretory pathway. Proc. Natl Acad. Sci. USA 102, 1271–1272 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nagai, H., Kagan, J.C., Zhu, X., Kahn, R.A. & Roy, C.R. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295, 679–682 (2002).

    ADS  CAS  PubMed  Google Scholar 

  93. Grieshaber, S.S., Grieshaber, N.A. & Hackstadt, T. Chlamydia trachomatis uses host cell dynein to traffic to the microtubule-organizing center in a p50 dynamitin-independent process. J. Cell Sci. 116, 3793–3802 (2003).

    CAS  PubMed  Google Scholar 

  94. Guignot, J. et al. Microtubule motors control membrane dynamics of Salmonella-containing vacuoles. J. Cell Sci. 117, 1033–1045 (2004).

    CAS  PubMed  Google Scholar 

  95. Harrison, R.E. et al. Salmonella impairs RILP recruitment to Rab7 during maturation of invasion vacuoles. Mol. Biol. Cell 15, 3146–3154 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Boucrot, E., Henry, T., Borg, J.P., Gorvel, J.P. & Meresse, S. The intracellular fate of Salmonella depends on the recruitment of kinesin. Science 308, 1174–1178 (2005).

    ADS  CAS  PubMed  Google Scholar 

  97. Smith, G.A. & Enquist, L.W. Break ins and break outs: viral interactions with the cytoskeleton of mammalian cells. Annu. Rev. Cell Dev. Biol. 18, 135–161 (2002).

    CAS  PubMed  Google Scholar 

  98. Belov, G.A., Fogg, M.H. & Ehrenfeld, E. Poliovirus proteins induce membrane association of GTPase ADP-ribosylation factor. J. Virol. 79, 7207–7216 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Loewen, C.J., Roy, A. & Levine, T.P. A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J. 22, 2025–2035 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sollner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    ADS  CAS  PubMed  Google Scholar 

  101. Banfield, D.K. SNARE complexes — is there sufficient complexity for vesicle targeting specificity? Trends Biochem. Sci. 26, 67–68 (2001).

    CAS  PubMed  Google Scholar 

  102. Short, B., Haas, A. & Barr, F.A. Golgins and GTPases, giving identity and structure to the Golgi apparatus. Biochim. Biophys. Acta 1744, 383–395 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to M. Freeman, A. Gillingham, P. Langridge and K. Röper for comments on the manuscript. R.B. is supported by the Cambridge European Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Munro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Author Information Reprints and permissions information is available at npg.nature.com/reprintsandpermissions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behnia, R., Munro, S. Organelle identity and the signposts for membrane traffic. Nature 438, 597–604 (2005). https://doi.org/10.1038/nature04397

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04397

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing