Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dendritic organization of sensory input to cortical neurons in vivo

Abstract

In sensory cortex regions, neurons are tuned to specific stimulus features. For example, in the visual cortex, many neurons fire predominantly in response to moving objects of a preferred orientation. However, the characteristics of the synaptic input that cortical neurons receive to generate their output firing pattern remain unclear. Here we report a novel approach for the visualization and functional mapping of sensory inputs to the dendrites of cortical neurons in vivo. By combining high-speed two-photon imaging with electrophysiological recordings, we identify local subthreshold calcium signals that correspond to orientation-specific synaptic inputs. We find that even inputs that share the same orientation preference are widely distributed throughout the dendritic tree. At the same time, inputs of different orientation preference are interspersed, so that adjacent dendritic segments are tuned to distinct orientations. Thus, orientation-tuned neurons can compute their characteristic firing pattern by integrating spatially distributed synaptic inputs coding for multiple stimulus orientations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visually evoked action potentials, subthreshold depolarizations and global dendritic calcium signals.
Figure 2: Subthreshold local dendritic calcium signals evoked by drifting grating stimulation.
Figure 3: Heterogeneity and distribution pattern of orientation-tuned dendritic hotspots.
Figure 4: Spatial arrangement of dendritic hotspots and input–output relation.

Similar content being viewed by others

References

  1. London, M. & Häusser, M. Dendritic computation. Annu. Rev. Neurosci. 28, 503–532 (2005)

    Article  CAS  Google Scholar 

  2. Bloodgood, B. L. & Sabatini, B. L. Ca2+ signaling in dendritic spines. Curr. Opin. Neurobiol. 17, 345–351 (2007)

    Article  CAS  Google Scholar 

  3. Markram, H. & Sakmann, B. Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage-activated calcium channels. Proc. Natl Acad. Sci. USA 91, 5207–5211 (1994)

    Article  ADS  CAS  Google Scholar 

  4. Nevian, T. & Sakmann, B. Spine Ca2+ signaling in spike-timing-dependent plasticity. J. Neurosci. 26, 11001–11013 (2006)

    Article  CAS  Google Scholar 

  5. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Häusser, M. & Mel, B. Dendrites: bug or feature? Curr. Opin. Neurobiol. 13, 372–383 (2003)

    Article  Google Scholar 

  7. Helmchen, F., Svoboda, K., Denk, W. & Tank, D. W. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nature Neurosci. 2, 989–996 (1999)

    Article  CAS  Google Scholar 

  8. Murayama, M. et al. Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457, 1137–1141 (2009)

    Article  ADS  CAS  Google Scholar 

  9. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D. W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997)

    Article  ADS  CAS  Google Scholar 

  10. Johnston, D. & Narayanan, R. Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci. 31, 309–316 (2008)

    Article  CAS  Google Scholar 

  11. Larkum, M. E. & Nevian, T. Synaptic clustering by dendritic signalling mechanisms. Curr. Opin. Neurobiol. 18, 321–331 (2008)

    Article  CAS  Google Scholar 

  12. Ohki, K. & Reid, R. C. Specificity and randomness in the visual cortex. Curr. Opin. Neurobiol. 17, 401–407 (2007)

    Article  CAS  Google Scholar 

  13. Magee, J. C. Dendritic integration of excitatory synaptic input. Nature Rev. Neurosci. 1, 181–190 (2000)

    Article  CAS  Google Scholar 

  14. Polsky, A., Mel, B. W. & Schiller, J. Computational subunits in thin dendrites of pyramidal cells. Nature Neurosci. 7, 621–627 (2004)

    Article  CAS  Google Scholar 

  15. Cash, S. & Yuste, R. Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22, 383–394 (1999)

    Article  CAS  Google Scholar 

  16. Bannister, A. P. Inter- and intra-laminar connections of pyramidal cells in the neocortex. Neurosci. Res. 53, 95–103 (2005)

    Article  Google Scholar 

  17. Hirsch, J. A. & Martinez, L. M. Laminar processing in the visual cortical column. Curr. Opin. Neurobiol. 16, 377–384 (2006)

    Article  CAS  Google Scholar 

  18. Svoboda, K., Helmchen, F., Denk, W. & Tank, D. W. Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo . Nature Neurosci. 2, 65–73 (1999)

    Article  CAS  Google Scholar 

  19. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962)

    Article  CAS  Google Scholar 

  20. Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968)

    Article  CAS  Google Scholar 

  21. White, L. E. & Fitzpatrick, D. Vision and cortical map development. Neuron 56, 327–338 (2007)

    Article  CAS  Google Scholar 

  22. Dräger, U. C. Receptive fields of single cells and topography in mouse visual cortex. J. Comp. Neurol. 160, 269–290 (1975)

    Article  Google Scholar 

  23. Métin, C., Godement, P. & Imbert, M. The primary visual cortex in the mouse: receptive field properties and functional organization. Exp. Brain Res. 69, 594–612 (1988)

    Article  Google Scholar 

  24. Niell, C. M. & Stryker, M. P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008)

    Article  CAS  Google Scholar 

  25. Kitamura, K., Judkewitz, B., Kano, M., Denk, W. & Häusser, M. Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo . Nature Methods 5, 61–67 (2008)

    Article  CAS  Google Scholar 

  26. Kerr, J. N., Greenberg, D. & Helmchen, F. Imaging input and output of neocortical networks in vivo . Proc. Natl Acad. Sci. USA 102, 14063–14068 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Anderson, J., Lampl, I., Reichova, I., Carandini, M. & Ferster, D. Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex. Nature Neurosci. 3, 617–621 (2000)

    Article  CAS  Google Scholar 

  28. Carandini, M. & Ferster, D. Membrane potential and firing rate in cat primary visual cortex. J. Neurosci. 20, 470–484 (2000)

    Article  CAS  Google Scholar 

  29. Bringuier, V., Chavane, F., Glaeser, L. & Fregnac, Y. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283, 695–699 (1999)

    Article  ADS  CAS  Google Scholar 

  30. Rochefort, N. L. et al. Sparsification of neuronal activity in the visual cortex at eye-opening. Proc. Natl Acad. Sci. USA 106, 15049–15054 (2009)

    Article  ADS  CAS  Google Scholar 

  31. Gordon, U., Polsky, A. & Schiller, J. Plasticity compartments in basal dendrites of neocortical pyramidal neurons. J. Neurosci. 26, 12717–12726 (2006)

    Article  CAS  Google Scholar 

  32. Koester, H. J. & Sakmann, B. Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J. Physiol. (Lond.) 529, 625–646 (2000)

    Article  CAS  Google Scholar 

  33. Bollmann, J. H. & Engert, F. Subcellular topography of visually driven dendritic activity in the vertebrate visual system. Neuron 61, 895–905 (2009)

    Article  CAS  Google Scholar 

  34. Kovalchuk, Y., Eilers, J., Lisman, J. & Konnerth, A. NMDA receptor-mediated subthreshold Ca2+ signals in spines of hippocampal neurons. J. Neurosci. 20, 1791–1799 (2000)

    Article  CAS  Google Scholar 

  35. Noguchi, J., Matsuzaki, M., Ellis-Davies, G. C. & Kasai, H. Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron 46, 609–622 (2005)

    Article  CAS  Google Scholar 

  36. Holthoff, K., Kovalchuk, Y., Yuste, R. & Konnerth, A. Single-shock LTD by local dendritic spikes in pyramidal neurons of mouse visual cortex. J. Physiol. (Lond.) 560, 27–36 (2004)

    Article  CAS  Google Scholar 

  37. Major, G., Polsky, A., Denk, W., Schiller, J. & Tank, D. W. Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. J. Neurophysiol. 99, 2584–2601 (2008)

    Article  CAS  Google Scholar 

  38. Larkum, M. E., Nevian, T., Sandler, M., Polsky, A. & Schiller, J. Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325, 756–760 (2009)

    Article  ADS  CAS  Google Scholar 

  39. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl Acad. Sci. USA 100, 7319–7324 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Sakmann for discussions and to Y. Kovalchuk for help in the initial experiments. This work was supported by grants from the DFG (to A.K.) and the Friedrich Schiedel Foundation. A.K. is a Carl von Linde Senior Fellow of the Institute for Advanced Study of the TUM. H.J., N.L.R. and X.C. were supported by the DFG (IRTG 1373).

Author information

Authors and Affiliations

Authors

Contributions

H.J., N.L.R. and X.C. carried out the experiments. H.J., N.L.R. and A.K. performed the analysis. A.K. designed the study and wrote the manuscript with the help of all authors.

Corresponding author

Correspondence to Arthur Konnerth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and References and Supplementary Figures 1-3 with legends. (PDF 741 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, H., Rochefort, N., Chen, X. et al. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307–1312 (2010). https://doi.org/10.1038/nature08947

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08947

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing