Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cortical representations of olfactory input by trans-synaptic tracing

Abstract

In the mouse, each class of olfactory receptor neurons expressing a given odorant receptor has convergent axonal projections to two specific glomeruli in the olfactory bulb, thereby creating an odour map. However, it is unclear how this map is represented in the olfactory cortex. Here we combine rabies-virus-dependent retrograde mono-trans-synaptic labelling with genetics to control the location, number and type of ‘starter’ cortical neurons, from which we trace their presynaptic neurons. We find that individual cortical neurons receive input from multiple mitral cells representing broadly distributed glomeruli. Different cortical areas represent the olfactory bulb input differently. For example, the cortical amygdala preferentially receives dorsal olfactory bulb input, whereas the piriform cortex samples the whole olfactory bulb without obvious bias. These differences probably reflect different functions of these cortical areas in mediating innate odour preference or associative memory. The trans-synaptic labelling method described here should be widely applicable to mapping connections throughout the mouse nervous system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic control of rabies-mediated neural circuit tracing.
Figure 2: The olfactory bulb to AON connections show a dorsal–ventral topography.
Figure 3: Representations of olfactory bulb input in the amygdala and piriform cortex.
Figure 4: Convergence and independence of mitral cell inputs.

References

  1. Cowan, W. M. The emergence of modern neuroanatomy and developmental neurobiology. Neuron 20, 413–426 (1998)

    Article  CAS  Google Scholar 

  2. Luo, L., Callaway, E. M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008)

    Article  CAS  Google Scholar 

  3. Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007)

    Article  CAS  Google Scholar 

  4. Ugolini, G. Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from hypoglossal motoneurons to connected second-order and higher order central nervous system cell groups. J. Comp. Neurol. 356, 457–480 (1995)

    Article  CAS  Google Scholar 

  5. Ugolini, G. Advances in viral transneuronal tracing. J. Neurosci. Methods 194, 2–20 (2010)

    Article  Google Scholar 

  6. Wickersham, I. R., Finke, S., Conzelmann, K. K. & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods 4, 47–49 (2007)

    Article  CAS  Google Scholar 

  7. Guo, C., Yang, W. & Lobe, C. G. A Cre recombinase transgene with mosaic, widespread tamoxifen-inducible action. Genesis 32, 8–18 (2002)

    Article  CAS  Google Scholar 

  8. Wise, S. P. & Jones, E. G. The organization and postnatal development of the commissural projection of the rat somatic sensory cortex. J. Comp. Neurol. 168, 313–343 (1976)

    Article  CAS  Google Scholar 

  9. Iriki, A., Pavlides, C., Keller, A. & Asanuma, H. Long-term potentiation in the motor cortex. Science 245, 1385–1387 (1989)

    Article  ADS  CAS  Google Scholar 

  10. Taymans, J. M. et al. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum. Gene Ther. 18, 195–206 (2007)

    Article  CAS  Google Scholar 

  11. Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991 (1994)

    Article  CAS  Google Scholar 

  12. Ressler, K. J., Sullivan, S. L. & Buck, L. B. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79, 1245–1255 (1994)

    Article  CAS  Google Scholar 

  13. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996)

    Article  CAS  Google Scholar 

  14. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999)

    Article  CAS  Google Scholar 

  15. Wilson, R. I. & Mainen, Z. F. Early events in olfactory processing. Annu. Rev. Neurosci. 29, 163–201 (2006)

    Article  CAS  Google Scholar 

  16. Luskin, M. B. & Price, J. L. The distribution of axon collaterals from the olfactory bulb and the nucleus of the horizontal limb of the diagonal band to the olfactory cortex, demonstrated by double retrograde labeling techniques. J. Comp. Neurol. 209, 249–263 (1982)

    Article  CAS  Google Scholar 

  17. Scott, J. W., McBride, R. L. & Schneider, S. P. The organization of projections from the olfactory bulb to the piriform cortex and olfactory tubercle in the rat. J. Comp. Neurol. 194, 519–534 (1980)

    Article  CAS  Google Scholar 

  18. Shipley, M. T. & Adamek, G. D. The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Res. Bull. 12, 669–688 (1984)

    Article  CAS  Google Scholar 

  19. Nevelle, K. R. & Haberly, L. B. in The Synaptic Organization of the Brain (ed. Shepherd, G. M. ) (Oxford Univ. Press, 2004)

    Google Scholar 

  20. Feinstein, P. & Mombaerts, P. A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell 117, 817–831 (2004)

    Article  CAS  Google Scholar 

  21. Schaefer, M. L., Finger, T. E. & Restrepo, D. Variability of position of the P2 glomerulus within a map of the mouse olfactory bulb. J. Comp. Neurol. 436, 351–362 (2001)

    Article  CAS  Google Scholar 

  22. Brunjes, P. C., Illig, K. R. & Meyer, E. A. A field guide to the anterior olfactory nucleus (cortex). Brain Res. Rev. 50, 305–335 (2005)

    Article  Google Scholar 

  23. Yan, Z. et al. Precise circuitry links bilaterally symmetric olfactory maps. Neuron 58, 613–624 (2008)

    Article  CAS  Google Scholar 

  24. Schoenfeld, T. A. & Macrides, F. Topographic organization of connections between the main olfactory bulb and pars externa of the anterior olfactory nucleus in the hamster. J. Comp. Neurol. 227, 121–135 (1984)

    Article  CAS  Google Scholar 

  25. Scott, J. W., Ranier, E. C., Pemberton, J. L., Orona, E. & Mouradian, L. E. Pattern of rat olfactory bulb mitral and tufted cell connections to the anterior olfactory nucleus pars externa. J. Comp. Neurol. 242, 415–424 (1985)

    Article  CAS  Google Scholar 

  26. Miyamichi, K., Serizawa, S., Kimura, H. M. & Sakano, H. Continuous and overlapping expression domains of odorant receptor genes in the olfactory epithelium determine the dorsal/ventral positioning of glomeruli in the olfactory bulb. J. Neurosci. 25, 3586–3592 (2005)

    Article  CAS  Google Scholar 

  27. Yoshihara, Y. et al. OCAM: a new member of the neural cell adhesion molecule family related to zone-to-zone projection of olfactory and vomeronasal axons. J. Neurosci. 17, 5830–5842 (1997)

    Article  CAS  Google Scholar 

  28. Swanson, L. W. & Petrovich, G. D. What is the amygdala? Trends Neurosci. 21, 323–331 (1998)

    Article  CAS  Google Scholar 

  29. Scalia, F. & Winans, S. S. The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. J. Comp. Neurol. 161, 31–55 (1975)

    Article  CAS  Google Scholar 

  30. Poo, C. & Isaacson, J. S. Odor representations in olfactory cortex: “sparse” coding, global inhibition, and oscillations. Neuron 62, 850–861 (2009)

    Article  CAS  Google Scholar 

  31. Stettler, D. D. & Axel, R. Representations of odor in the piriform cortex. Neuron 63, 854–864 (2009)

    Article  CAS  Google Scholar 

  32. Lei, H., Mooney, R. & Katz, L. C. Synaptic integration of olfactory information in mouse anterior olfactory nucleus. J. Neurosci. 26, 12023–12032 (2006)

    Article  CAS  Google Scholar 

  33. Franks, K. M. & Isaacson, J. S. Strong single-fiber sensory inputs to olfactory cortex: implications for olfactory coding. Neuron 49, 357–363 (2006)

    Article  CAS  Google Scholar 

  34. Stokes, C. C. & Isaacson, J. S. From dendrite to soma: dynamic routing of inhibition by complementary interneuron microcircuits in olfactory cortex. Neuron 67, 452–465 (2010)

    Article  CAS  Google Scholar 

  35. Apicella, A., Yuan, Q., Scanziani, M. & Isaacson, J. S. Pyramidal cells in piriform cortex receive convergent input from distinct olfactory bulb glomeruli. J. Neurosci. 30, 14255–14260 (2010)

    Article  CAS  Google Scholar 

  36. Suzuki, N. & Bekkers, J. M. Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J. Comp. Neurol. 518, 1670–1687 (2010)

    Article  CAS  Google Scholar 

  37. Christie, J. M. et al. Connexin36 mediates spike synchrony in olfactory bulb glomeruli. Neuron 46, 761–772 (2005)

    Article  CAS  Google Scholar 

  38. Haberly, L. B. Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem. Senses 26, 551–576 (2001)

    Article  CAS  Google Scholar 

  39. Kobayakawa, K. et al. Innate versus learned odour processing in the mouse olfactory bulb. Nature 450, 503–508 (2007)

    Article  ADS  CAS  Google Scholar 

  40. Marin, E. C., Jefferis, G. S., Komiyama, T., Zhu, H. & Luo, L. Representation of the glomerular olfactory map in the Drosophila brain. Cell 109, 243–255 (2002)

    Article  CAS  Google Scholar 

  41. Wong, A. M., Wang, J. W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002)

    Article  CAS  Google Scholar 

  42. Jefferis, G. S. et al. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187–1203 (2007)

    Article  CAS  Google Scholar 

  43. Davis, R. L. Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu. Rev. Neurosci. 28, 275–302 (2005)

    Article  CAS  Google Scholar 

  44. Murthy, M., Fiete, I. & Laurent, G. Testing odor response stereotypy in the Drosophila mushroom body. Neuron 59, 1009–1023 (2008)

    Article  CAS  Google Scholar 

  45. Marshel, J. H., Mori, T., Nielsen, K. J. & Callaway, E. M. Targeting single neuronal networks for gene expression and cell labeling in vivo . Neuron 67, 562–574 (2010)

    Article  CAS  Google Scholar 

  46. Stepien, A. E., Tripodi, M. & Arber, S. Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells. Neuron 68, 456–472 (2010)

    Article  CAS  Google Scholar 

  47. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature Neurosci. 13, 133–140 (2010)

    Article  CAS  Google Scholar 

  48. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007)

    Article  ADS  CAS  Google Scholar 

  49. Urlinger, S. et al. Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc. Natl Acad. Sci. USA 97, 7963–7968 (2000)

    Article  ADS  CAS  Google Scholar 

  50. Zong, H., Espinosa, J. S., Su, H. H., Muzumdar, M. D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005)

    Article  CAS  Google Scholar 

  51. Muzumdar, M. D., Luo, L. & Zong, H. Modeling sporadic loss of heterozygosity in mice by using mosaic analysis with double markers (MADM). Proc. Natl Acad. Sci. USA 104, 4495–4500 (2007)

    Article  ADS  CAS  Google Scholar 

  52. Chung, J. H., Whiteley, M. & Felsenfeld, G. A 5′ element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila . Cell 74, 505–514 (1993)

    Article  CAS  Google Scholar 

  53. Li, L. et al. Visualizing the distribution of synapses from individual neurons in the mouse brain. PLoS ONE 5, e11503 (2010)

    Article  ADS  Google Scholar 

  54. Wickersham, I. R., Sullivan, H. A. & Seung, H. S. Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons. Nature Protocols 5, 595–606 (2010)

    Article  CAS  Google Scholar 

  55. Espinosa, J. S., Wheeler, D. G., Tsien, R. W. & Luo, L. Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron 62, 205–217 (2009)

    Article  CAS  Google Scholar 

  56. Zhang, Z. Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vis. 13, 119–152 (1994)

    Article  Google Scholar 

  57. Cong, G. & Parvin, B. Surface reconstruction from sparse fringe contours. Proc. 4th IEEE Workshop Applicat. Comput. Vis. 140, (1998)

  58. Schroeder, W., Martin, K. & Lorensen, B. The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics (Prentice Hall, 1997)

    Google Scholar 

Download references

Acknowledgements

We thank Stanford Transgenic Facility for help in generating transgenic mice, F. Zhang and K. Deisseroth for teaching us stereotactic injection, Y. Yoshihara and H. Zeng for reagents, C. Manalac and M. Shu for technical assistance, R. Axel, L. Buck, and L. Stryer, R. Yuste and members of the L.L. laboratory for discussion and critical reading of the manuscript. K.M. was supported by the JSPS program for Research Abroad and Human Frontier Science Program. K.M. is currently a research associate and L.L. is an investigator of the Howard Hughes Medical Institute. This work was also supported by an NIH grant.

Author information

Authors and Affiliations

Authors

Contributions

K.M. planned and performed all the experiments. F.A. and F.M. developed the computer programs for 3D reconstructions and statistical simulation under the supervision of M.A.H. C.W. and Z.H. performed the initial AAV production. I.W., N.R.W. and E.M.C. provided the modified rabies virus and the construct to make the AAV vector. H.T. and Z.J.H. provided the GAD2-CreER mice. B.T. provided DNA constructs. L.L. supervised the project. L.L. and K.M. wrote the manuscript, with contributions from B.T.

Corresponding author

Correspondence to Liqun Luo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-13 with legends, Supplementary Table 1 and additional references. (PDF 2324 kb)

Supplementary Movie 1

This movie shows 3D-reconstruciton of an olfactory bulb corresponding to Figure 2c and Supplemental Figure 8. (MP4 8129 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamichi, K., Amat, F., Moussavi, F. et al. Cortical representations of olfactory input by trans-synaptic tracing. Nature 472, 191–196 (2011). https://doi.org/10.1038/nature09714

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09714

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing