Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cis-regulatory control of corticospinal system development and evolution

Abstract

The co-emergence of a six-layered cerebral neocortex and its corticospinal output system is one of the evolutionary hallmarks of mammals. However, the genetic programs that underlie their development and evolution remain poorly understood. Here we identify a conserved non-exonic element (E4) that acts as a cortex-specific enhancer for the nearby gene Fezf2 (also known as Fezl and Zfp312), which is required for the specification of corticospinal neuron identity and connectivity. We find that SOX4 and SOX11 functionally compete with the repressor SOX5 in the transactivation of E4. Cortex-specific double deletion of Sox4 and Sox11 leads to the loss of Fezf2 expression, failed specification of corticospinal neurons and, independent of Fezf2, a reeler-like inversion of layers. We show evidence supporting the emergence of functional SOX-binding sites in E4 during tetrapod evolution, and their subsequent stabilization in mammals and possibly amniotes. These findings reveal that SOX transcription factors converge onto a cis-acting element of Fezf2 and form critical components of a regulatory network controlling the identity and connectivity of corticospinal neurons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of a cortex-specific Fezf2 enhancer.
Figure 2: Loss of neocortical Fezf2 expression and CS axons in E4-knockout mice.
Figure 3: SOX4 and SOX11 bind to and activate E4 via competition with SOX5.
Figure 4: Sox4 and Sox11 are required for Fezf2 expression and CS tract formation.
Figure 5: Functional analysis of species differences in E4 sequence.

Similar content being viewed by others

References

  1. Northcutt, R. G. & Kaas, J. H. The emergence and evolution of mammalian neocortex. Trends Neurosci. 18, 373–379 (1995)

    Article  CAS  Google Scholar 

  2. Nieuwenhuys, R., ten Donkelaar, H. J. & Nicholson, C. The Central Nervous System of Vertebrates (Springer, 1998)

    Book  Google Scholar 

  3. Butler, A. B., Reiner, A. & Karten, H. J. Evolution of the amniote pallium and the origins of mammalian neocortex. Ann. NY Acad. Sci. 1225, 14–27 (2011)

    Article  ADS  Google Scholar 

  4. O’Leary, D. D. M. & Koester, S. E. Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex. Neuron 10, 991–1006 (1993)

    Article  Google Scholar 

  5. Rash, B. G. & Grove, E. A. Area and layer patterning in the developing cerebral cortex. Curr. Opin. Neurobiol. 16, 25–34 (2006)

    Article  CAS  Google Scholar 

  6. Molyneaux, B. J., Arlotta, P., Menezes, J. R. L. & Macklis, J. D. Neuronal subtype specification in the cerebral cortex. Nature Rev. Neurosci. 8, 427–437 (2007)

    Article  CAS  Google Scholar 

  7. Leone, D. P., Srinivasan, K., Chen, B., Alcamo, E. & McConnell, S. K. The determination of projection neuron identity in the developing cerebral cortex. Curr. Opin. Neurobiol. 18, 28–35 (2008)

    Article  CAS  Google Scholar 

  8. Hansen, D. V., Rubenstein, J. L. & Kriegstein, A. R. Deriving excitatory neurons of the neocortex from pluripotent stem cells. Neuron 70, 645–660 (2011)

    Article  CAS  Google Scholar 

  9. Kwan, K. Y., Sestan, N. & Anton, E. S. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 139, 1535–1546 (2012)

    Article  CAS  Google Scholar 

  10. Caviness, V. S. & Sidman, R. L. Time of origin of corresponding cell classes in cerebral-cortex of normal and reeler mutant mice: autoradiographic analysis. J. Comp. Neurol. 148, 141–151 (1973)

    Article  Google Scholar 

  11. Steindler, D. A. & Colwell, S. A. Reeler mutant mouse: maintenance of appropriate and reciprocal connections in the cerebral cortex and thalamus. Brain Res. 113, 386–393 (1976)

    Article  CAS  Google Scholar 

  12. Terashima, T. Anatomy, development and lesion-induced plasticity of rodent corticospinal tract. Neurosci. Res. 22, 139–161 (1995)

    Article  CAS  Google Scholar 

  13. Bar, I., de Rouvroit, C. L. & Goffinet, A. M. The evolution of cortical development. An hypothesis based on the role of the Reelin signaling pathway. Trends Neurosci. 23, 633–638 (2000)

    Article  CAS  Google Scholar 

  14. Rice, D. S. & Curran, T. Role of the Reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24, 1005–1039 (2001)

    Article  CAS  Google Scholar 

  15. Joosten, E. A. J. & Bar, D. P. R. Axon guidance of outgrowing corticospinal fibres in the rat. J. Anat. 194, 15–32 (1999)

    Article  Google Scholar 

  16. Martin, J. H. The corticospinal system: from development to motor control. Neuroscientist 11, 161–173 (2005)

    Article  Google Scholar 

  17. Canty, A. J. & Murphy, M. Molecular mechanisms of axon guidance in the developing corticospinal tract. Prog. Neurobiol. 85, 214–235 (2008)

    Article  CAS  Google Scholar 

  18. Lemon, R. N. Descending pathways in motor control. Annu. Rev. Neurosci. 31, 195–218 (2008)

    Article  CAS  Google Scholar 

  19. Rathelot, J.-A. & Strick, P. L. Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc. Natl Acad. Sci. USA 106, 918–923 (2009)

    Article  ADS  CAS  Google Scholar 

  20. Nudo, R. J. & Masterton, R. B. Descending pathways to the spinal-cord. IV. Some factors related to the amount of cortex devoted to the corticospinal tract. J. Comp. Neurol. 296, 584–597 (1990)

    Article  CAS  Google Scholar 

  21. ten Donkelaar, H. J. et al. Development and malformations of the human pyramidal tract. J. Neurol. 251, 1429–1442 (2004)

    Article  CAS  Google Scholar 

  22. Eyre, J. A. Corticospinal tract development and its plasticity after perinatal injury. Neurosci. Biobehav. Rev. 31, 1136–1149 (2007)

    Article  CAS  Google Scholar 

  23. Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet. 1, 20–29 (2000)

    Article  CAS  Google Scholar 

  24. Hobert, O., Carrera, I. & Stefanakis, N. The molecular and gene regulatory signature of a neuron. Trends Neurosci. 33, 435–445 (2010)

    Article  CAS  Google Scholar 

  25. Wray, G. A. The evolutionary significance of cis-regulatory mutations. Nature Rev. Genet. 8, 206–216 (2007)

    Article  CAS  Google Scholar 

  26. Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008)

    Article  CAS  Google Scholar 

  27. Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009)

    Article  ADS  CAS  Google Scholar 

  28. Davidson, E. H. Emerging properties of animal gene regulatory networks. Nature 468, 911–920 (2010)

    Article  ADS  CAS  Google Scholar 

  29. Williamson, I., Hill, R. E. & Bickmore, W. A. Enhancers: from developmental genetics to the genetics of common human disease. Dev. Cell 21, 17–19 (2011)

    Article  CAS  Google Scholar 

  30. Hashimoto, H. et al. Expression of the zinc finger gene fez-like in zebrafish forebrain. Mech. Dev. 97, 191–195 (2000)

    Article  CAS  Google Scholar 

  31. Matsuo-Takasaki, M., Lim, J. H., Beanan, M. J., Sato, S. M. & Sargent, T. D. Cloning and expression of a novel zinc finger gene, Fez, transcribed in the forebrain of Xenopus and mouse embryos. Mech. Dev. 93, 201–204 (2000)

    Article  CAS  Google Scholar 

  32. Inoue, K., Terashima, T., Nishikawa, T. & Takumi, T. Fez1 is layer-specifically expressed in the adult mouse neocortex. Eur. J. Neurosci. 20, 2909–2916 (2004)

    Article  Google Scholar 

  33. Molyneaux, B. J., Arlotta, P., Hirata, T., Hibi, M. & Macklis, J. D. Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47, 817–831 (2005)

    Article  CAS  Google Scholar 

  34. Chen, B., Schaevitz, L. R. & McConnell, S. K. Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl Acad. Sci. USA 102, 17184–17189 (2005)

    Article  ADS  CAS  Google Scholar 

  35. Chen, J. G., Rasin, M. R., Kwan, K. Y. & Sestan, N. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl Acad. Sci. USA 102, 17792–17797 (2005)

    Article  ADS  CAS  Google Scholar 

  36. Chen, B. et al. The Fezf2-Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex. Proc. Natl Acad. Sci. USA 105, 11382–11387 (2008)

    Article  ADS  CAS  Google Scholar 

  37. Rouaux, C. & Arlotta, P. Fezf2 directs the differentiation of corticofugal neurons from striatal progenitors in vivo. Nature Neurosci. 13, 1345–1347 (2010)

    Article  CAS  Google Scholar 

  38. Gong, S. C. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003)

    Article  ADS  CAS  Google Scholar 

  39. Kwan, K. Y. et al. SOX5 postmitotically regulates migration, postmigratory differentiation, and projections of subplate and deep-layer neocortical neurons. Proc. Natl Acad. Sci. USA 105, 16021–16026 (2008)

    Article  ADS  CAS  Google Scholar 

  40. Han, W. Q. et al. TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract. Proc. Natl Acad. Sci. USA 108, 3041–3046 (2011)

    Article  ADS  CAS  Google Scholar 

  41. Fertuzinhos, S. et al. Selective depletion of molecularly defined cortical interneurons in human holoprosencephaly with severe striatal hypoplasia. Cereb. Cortex 19, 2196–2207 (2009)

    Article  Google Scholar 

  42. Bergsland, M., Werme, M., Malewicz, M., Perlmann, T. & Muhr, J. The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev. 20, 3475–3486 (2006)

    Article  CAS  Google Scholar 

  43. Dy, P. et al. The three SoxC proteins-Sox4, Sox11 and Sox12-exhibit overlapping expression patterns and molecular properties. Nucleic Acids Res. 36, 3101–3117 (2008)

    Article  CAS  Google Scholar 

  44. Bhattaram, P. et al. Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nature Commun. 1, 9 (2010)

    Article  Google Scholar 

  45. Kang, H. J. et al. Spatio-temporal transcriptome of the human brain. Nature 478, 483–489 (2011)

    Article  ADS  CAS  Google Scholar 

  46. Lai, T. et al. SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 57, 232–247 (2008)

    Article  CAS  Google Scholar 

  47. Lo-Castro, A. et al. Deletion 2p25.2: a cryptic chromosome abnormality in a patient with autism and mental retardation detected using aCGH. Eur. J. Med. Genet. 52, 67–70 (2009)

    Article  Google Scholar 

  48. Bedogni, F. et al. Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex. Proc. Natl Acad. Sci. USA 107, 13129–13134 (2010)

    Article  ADS  CAS  Google Scholar 

  49. McKenna, W. L. et al. Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J. Neurosci. 31, 549–564 (2011)

    Article  CAS  Google Scholar 

  50. Wild, J. M. & Williams, M. N. Rostral wulst in passerine birds. I. Origin, course, and terminations of an avian pyramidal tract. J. Comp. Neurol. 416, 429–450 (2000)

    Article  CAS  Google Scholar 

  51. Penzo-Méndez, A., Dy, P., Pallavi, B. & Lefebvre, V. Generation of mice harboring a Sox4 conditional null allele. Genesis 45, 776–780 (2007)

    Article  Google Scholar 

  52. Kawamoto, S. et al. A novel reporter mouse strain that expresses enhanced green fluorescent protein upon Cre-mediated recombination. FEBS Lett. 470, 263–268 (2000)

    Article  CAS  Google Scholar 

  53. Iwasato, T. et al. Dorsal telencephalon-specific expression of Cre recombinase in PAC transgenic mice. Genesis 38, 130–138 (2004)

    Article  CAS  Google Scholar 

  54. Liu, P. T., Jenkins, N. A. & Copeland, N. G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003)

    Article  CAS  Google Scholar 

  55. Visel, A., Thaller, C. & Eichele, G. GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res. 32, D552–D556 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Han, Y. Imamura Kawasawa, D. Liu and T. Nottoli for technical help; A. Giraldez and A. M. M. Sousa for reagents; and the Sestan laboratory for discussions. This work was supported by the National Institutes of Health (NS054273, MH081896, AR54153), the March of Dimes Foundation and a McDonnell Scholar Award (N.S.).

Author information

Authors and Affiliations

Authors

Contributions

S.S., K.Y.K. and N.S. designed the research; S.S. performed the experiments; S.S. and K.Y.K. performed the confocal imaging, M.L. analysed coexpression and deep sequencing data; S.S., K.Y.K. and N.S. analysed the other data; V.L. generated mice with floxed Sox4 and Sox11 alleles; N.S. conceived the study; and S.S., K.Y.K. and N.S. wrote the manuscript. All authors discussed and commented on the data.

Corresponding author

Correspondence to Nenad Šestan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-13 and Supplementary Table 1. (PDF 1936 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, S., Kwan, K., Li, M. et al. Cis-regulatory control of corticospinal system development and evolution. Nature 486, 74–79 (2012). https://doi.org/10.1038/nature11094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11094

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing