Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adaptation in the chemotactic guidance of nerve growth cones

Abstract

Pathfinding by growing axons in the developing nervous system may be guided by gradients of extracellular guidance factors. Analogous to the process of chemotaxis in microorganisms, we found that axonal growth cones of cultured Xenopus spinal neurons exhibit adaptation during chemotactic migration, undergoing consecutive phases of desensitization and resensitization in the presence of increasing basal concentrations of the guidance factor netrin-1 or brain-derived neurotrophic factor. The desensitization is specific to the guidance factor and is accompanied by a reduction of Ca2+ signalling, whereas resensitization requires activation of mitogen-associated protein kinase and local protein synthesis. Such adaptive behaviour allows the growth cone to re-adjust its sensitivity over a wide range of concentrations of the guidance factor, an essential feature for long-range chemotaxis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Turning of nerve growth cones induced by a gradient of netrin-1.
Figure 2: Desensitization and resensitization of turning responses.
Figure 3: Zig-zag pathfinding of the growth cone.
Figure 4: Heterologous desensitization between netrin-1 and BDNF.
Figure 5: Calcium signals induced by a netrin-1 gradient correlate with adaptation.
Figure 6: Activation of MAPK by netrin-1 and BDNF, and involvement of MAPK in growth-cone chemotaxis.
Figure 7: Effects of protein synthesis inhibition.
Figure 8: A model of growth-cone adaptation in a gradient of guidance cues.

Similar content being viewed by others

References

  1. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996)

    Article  ADS  CAS  Google Scholar 

  2. Mueller, B. K. Growth cone guidance: first steps towards a deeper understanding. Annu. Rev. Neurosci. 22, 351–388 (1999)

    Article  CAS  Google Scholar 

  3. Ramón y Cajal, S. Histology of the Nervous System (trans. Swanson, N. & Swanson, L. W.) Vol. 1, 532–537 (Oxford Univ. Press, New York, 1995)

    Google Scholar 

  4. Tessier-Lavigne, M., Placzek, M., Lumsden, A. G., Dodd, J. & Jessell, T. M. Chemotropic guidance of developing axons in the mammalian central nervous system. Nature 336, 775–778 (1988)

    Article  ADS  CAS  Google Scholar 

  5. Pini, A. Chemorepulsion of axons in the developing mammalian central nervous system. Science 261, 95–98 (1993)

    Article  ADS  CAS  Google Scholar 

  6. Lumsden, A. G. & Davies, A. M. Earliest sensory nerve fibres are guided to peripheral targets by attractants other than nerve growth factor. Nature 306, 786–788 (1983)

    Article  ADS  CAS  Google Scholar 

  7. Keynes, R. et al. Surround repulsion of spinal sensory axons in higher vertebrate embryos. Neuron 18, 889–897 (1997)

    Article  CAS  Google Scholar 

  8. Song, H.-J. & Poo, M.-M. The cell biology of neuronal navigation. Nature Cell Biol. 3, E81–E88 (2001)

    Article  CAS  Google Scholar 

  9. Baier, H. & Bonhoeffer, F. Axon guidance by gradients of a target-derived component. Science 255, 472–475 (1992)

    Article  ADS  CAS  Google Scholar 

  10. Rosentreter, S. M. et al. Response of retinal ganglion cell axons to striped linear gradients of repellent guidance molecules. J. Neurobiol. 37, 541–562 (1998)

    Article  CAS  Google Scholar 

  11. Loschinger, J., Weth, F. & Bonhoeffer, F. Reading of concentration gradients by axonal growth cones. Phil. Trans. R. Soc. Lond. B Biol. Sci. 355, 971–982 (2000)

    Article  CAS  Google Scholar 

  12. Falke, J. J., Bass, R. B., Butler, S. L., Chervitz, S. A. & Danielson, M. A. The two-component signalling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu. Rev. Cell Dev. Biol. 13, 457–512 (1997)

    Article  CAS  Google Scholar 

  13. Ming, G. L. et al. cAMP-dependent growth cone guidance by netrin-1. Neuron 19, 1225–1235 (1997)

    Article  MathSciNet  CAS  Google Scholar 

  14. Yee, K. T., Simon, H. H., Tessier-Lavigne, M. & O'Leary, D. M. Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron 24, 607–622 (1999)

    Article  CAS  Google Scholar 

  15. Lohof, A. M., Quillan, M., Dan, Y. & Poo, M.-M. Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J. Neurosci. 12, 1253–1261 (1992)

    Article  CAS  Google Scholar 

  16. Zheng, J. Q., Felder, M., Connor, J. A. & Poo, M.-M. Turning of nerve growth cones induced by neurotransmitters. Nature 368, 140–144 (1994)

    Article  ADS  CAS  Google Scholar 

  17. Song, H-j., Ming, G-l. & Poo, M.-M. Cyclic-AMP-induced switching in turning direction of nerve growth cones. Nature 388, 275–279 (1997)

    Article  ADS  CAS  Google Scholar 

  18. Ming, G., Lohof, A. M. & Zheng, J. Q. Acute morphogenic and chemotropic effects of neurotrophins on cultured embryonic Xenopus spinal neurons. J. Neurosci. 17, 7860–7871 (1997)

    Article  CAS  Google Scholar 

  19. Tucker, K. L., Meyer, M. & Barde, Y. A. Neurotrophins are required for nerve growth during development. Nature Neurosci. 4, 29–37 (2001)

    Article  CAS  Google Scholar 

  20. Ming, G. et al. Phospholipase C-γ and Phosphoinositide 3-kinase mediate cytoplasmic signalling in nerve growth cone guidance. Neuron 23, 139–148 (1999)

    Article  CAS  Google Scholar 

  21. Hong, K., Nishiyama, M., Henley, J., Tessier-Lavigne, M. & Poo, M. Calcium signalling in the guidance of nerve growth by netrin-1. Nature 403, 93–98 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Kater, S. B., Mattson, M. P., Cohan, C. & Connor, J. Calcium regulation of the neuronal growth cone. Trends Neurosci. 11, 315–321 (1988)

    Article  CAS  Google Scholar 

  23. Gu, X. & Spitzer, N. C. Distinct aspects of neuronal differentiation encoded by frequency of spontaneous Ca2+ transients. Nature 375, 784–787 (1995)

    Article  ADS  CAS  Google Scholar 

  24. Gomez, T. M. & Spitzer, N. C. In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397, 350–355 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Gomez, T. M., Robles, E., Poo, M. & Spitzer, N. C. Filopodial calcium transients promote substrate-dependent growth cone turning. Science 291, 1983–1987 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Huang, E. J. & Reichardt, L. F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001)

    Article  CAS  Google Scholar 

  27. Seger, R. et al. Overexpression of mitogen-activated protein kinase kinase (MAPKK) and its mutants in NIH 3T3 cells. Evidence that MAPKK involvement in cellular proliferation is regulated by phosphorylation of serine residues in its kinase subdomains VII and VIII. J. Biol. Chem. 269, 25699–25709 (1994)

    CAS  PubMed  Google Scholar 

  28. DeSilva, D. R. et al. Inhibition of mitogen-activated protein kinase kinase blocks T cell proliferation but does not induce or prevent anergy. J. Immunol. 160, 4175–4181 (1998)

    CAS  PubMed  Google Scholar 

  29. Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J. & Saltiel, A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl Acad. Sci. USA 92, 7686–7689 (1995)

    Article  ADS  CAS  Google Scholar 

  30. Sonenberg, N. & Gingras, A. C. The mRNA 5′ cap-binding protein eIF4E and control of cell growth. Curr. Opin. Cell Biol. 10, 268–275 (1998)

    Article  CAS  Google Scholar 

  31. Waring, P. DNA fragmentation induced in macrophages by gliotoxin does not require protein synthesis and is preceded by raised inositol triphosphate levels. J. Biol. Chem. 265, 14476–14480 (1990)

    CAS  PubMed  Google Scholar 

  32. Kochi, S. K. & Collier, R. J. DNA fragmentation and cytolysis in U937 cells treated with diphtheria toxin or other inhibitors of protein synthesis. Exp. Cell Res. 208, 296–302 (1993)

    Article  CAS  Google Scholar 

  33. Mittleman, B., Zandomeni, R. & Weinmann, R. Mechanism of action of 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole. II. A resistant human cell mutant with an altered transcriptional machinery. J. Mol. Biol. 165, 461–473 (1983)

    Article  CAS  Google Scholar 

  34. Burhans, W. C. et al. Emetine allows identification of origins of mammalian DNA replication by imbalanced DNA synthesis, not through conservative nucleosome segregation. EMBO J. 10, 4351–4360 (1991)

    Article  CAS  Google Scholar 

  35. Martin, S. J., Lennon, S. V., Bonham, A. M. & Cotter, T. G. Induction of apoptosis (programmed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis. J. Immunol. 145, 1859–1867 (1990)

    CAS  PubMed  Google Scholar 

  36. Hausdorff, W. P., Caron, M. G. & Lefkowitz, R. J. Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB J. 4, 2881–2889 (1990)

    Article  CAS  Google Scholar 

  37. Sorkin, A. & Waters, C. M. Endocytosis of growth factor receptors. Bioessays 15, 375–382 (1993)

    Article  CAS  Google Scholar 

  38. Meyer-Franke, A. et al. Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21, 681–693 (1998)

    Article  CAS  Google Scholar 

  39. Song, H.-J. & Poo, M.-M. Signal transduction underlying growth cone guidance by diffusible factors. Curr. Opin. Neuroiol. 9, 355–363 (1999)

    Article  CAS  Google Scholar 

  40. Ming, G., Henley, J., Tessier-Lavigne, M., Song, H. & Poo, M. Electrical activity modulates growth cone guidance by diffusible factors. Neuron 29, 441–452 (2001)

    Article  CAS  Google Scholar 

  41. Wang, Y., Liu, J. & Segall, J. E. MAP kinase function in amoeboid chemotaxis. J. Cell Sci. 111, 373–383 (1998)

    CAS  PubMed  Google Scholar 

  42. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001)

    Article  ADS  CAS  Google Scholar 

  43. Takei, N., Kawamura, M., Hara, K., Yonezawa, K. & Nawa, H. Brain-derived neurotrophic factor enhances neuronal translation by activating multiple initiation processes. J. Biol. Chem. 276, 42818–42825 (2001)

    Article  CAS  Google Scholar 

  44. Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 20, 1013–1026 (2001)

    Article  Google Scholar 

  45. Aakalu, G., Smith, W. B., Nguyen, N., Jiang, C. & Schuman, E. M. Dynamic visualization of local protein synthesis in hippocampal neurons. Neuron 30, 489–502 (2001)

    Article  CAS  Google Scholar 

  46. Steward, O. & Schuman, E. M. Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24, 299–325 (2001)

    Article  CAS  Google Scholar 

  47. Job, C. & Eberwine, J. Localization and translation of mRNA in dendrites and axons. Nature Rev. Neurosci. 2, 889–898 (2001)

    Article  CAS  Google Scholar 

  48. Spitzer, N. C. & Lamborghini, J. E. The development of the action potential mechanism of amphibian neurons isolated in culture. Proc. Natl Acad. Sci. USA 73, 1641–1645 (1976)

    Article  ADS  CAS  Google Scholar 

  49. Pierceall, W. E. et al. Expression of a homologue of the deleted in colorectal cancer (DCC) gene in the nervous system of developing Xenopus embryos. Dev. Biol. 166, 654–665 (1994)

    Article  CAS  Google Scholar 

  50. Hill, H. D. & Straka, J. G. Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal. Biochem. 170, 203–208 (1988)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Chick recombinant netrin-1 was provided by M. Tessier-Lavigne. This work was supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu-ming Poo.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ming, Gl., Wong, S., Henley, J. et al. Adaptation in the chemotactic guidance of nerve growth cones. Nature 417, 411–418 (2002). https://doi.org/10.1038/nature745

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature745

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing