Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo

Abstract

Retroviral vectors derived from lentiviruses such as HIV-1 are promising tools for human gene therapy because they mediate the in vivo delivery and long-term expression of transgenes in nondividing tissues. We describe an HIV vector system in which the virulence genes env, vif, vpr, vpu, and nef have been deleted. This multiply attenuated vector conserved the ability to transduce growth-arrested cells and monocyte-derived macrophages in culture, and could efficiently deliver genes in vivo into adult neurons. These data demonstrate the potential of lentiviral vectors in human gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mulligan, R.C. 1993. The basis science of gene therapy. Science 260: 926–932.

    Article  CAS  PubMed  Google Scholar 

  2. Crystal, R.G. 1995. Transfer of genes to humans: early lessons and obstacles to success. Science 270: 404–410.

    Article  CAS  PubMed  Google Scholar 

  3. Leiden, J.M. 1995. Gene therapy—promises, pitfalls and prognosis. N. Engl. J. Med. 333: 871–873.

    Article  CAS  PubMed  Google Scholar 

  4. Sanders, W.R. 1995. Human gene therapy—of tortoises and hares. Nature Medicine 1: 1137–1138.

    Article  Google Scholar 

  5. Roe, T., Reynolds, T.C., Yu, G., and Brown, P.O. 1993. Integration of murine leukemia virus DNA depends on mitosis. EMBO J. 12: 2099–2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewis, P.F. and Emerman, M. 1994. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J. Virol. 68: 510–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lewis, P., Hensel, M., and Emerman, M. 1992. Human immunodeficiency virus infection of cell arrested in the cell cycle. EMBO J. 11: 3053–3058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bukrinsky, M.I., Haggerty, S., Dempsey, M.P., Sharova, N., Adzhubei, A., Spitz, L., et al. 1993. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 365: 666–669.

    Article  CAS  PubMed  Google Scholar 

  9. von Schwedler, U., Kornbluth, R.S., and Trono, D. 1994. The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc. Natl. Acad. Sci. USA 91: 6992–6996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gallay, P., Stitt, V., Mundy, C., Oettinger, M., and Trono, D. 1996. Role of the karyopherin pathway in human immunodeficiency type 1 nuctear import. J. Virol. 70: 1027–1032.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Naldini, L., Blömer, U., Gallay, P., Ory, D., Mulligan, R.C., Gage, F.H., et al. 1996. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  12. Naldini, L., Blömer, U., Gage, F.H., Trono, D. and Verma, I.M. 1996. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl Acad. Sci. USA 93: 11382–11388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Trono, D. 1995. HIV accessory proteins: leading role for the supporting cast. Cell 82: 189–192.

    Article  CAS  PubMed  Google Scholar 

  14. Miller, R.H. and Sarver, N. 1997. HIV accessory proteins as therapeutic targets. Nature Medicine 3: 389–394.

    Article  CAS  PubMed  Google Scholar 

  15. Gheysen, D. et al. 1989. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell 59: 103–112.

    Article  CAS  PubMed  Google Scholar 

  16. Heinzfriger, N.K., Bukrinsky, M.I., Haggerty, S.A., Ragland, A.M., Kewalramani, V., Lee, M.A., et al. 1994. The Vpr protein of human immunodeficiency virus type 1 influences nuctear localization of viral nudefc acids in nondividing host cells. Proc. Natl. Acad. Sci. USA 91: 7311–7315.

    Article  Google Scholar 

  17. Gabuzda, D.H., Lawrence, K., Langhoff, E., Terwilliger, E.F., Dorfman, T., Haseltine, W.A., et al. 1992. Role of vif in replication of human immunodeficiency virus type 1 in CD4+ T lymphocytes. J. Virol. 66: 6489–6495.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. von Schwedler, U., Song, J., Aiken, C., and Trono, D. 1993. vif is crucial for human immunodeficiency virus type 1 proviral DNA synthesis in infected cells. J. Virol. 67: 4945–4955.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Klimkait, T., Strebel, K., Hoggan, M.D., Martin, M.A., and Orenstein, J.M. 1990. The human immunodeficiency virus type 1-specific protein vpu is required for efficient virus maturation and release. J. Virol. 64: 621–629.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Göttlinger, H.G., Dorfman, T., Cohen, E., and Haseltine, W.A. 1993. Vpu protein of human immunodeficiency virus type 1 enhances the release of capsids produced by gag gene constructs of widely divergent retroviruses. Proc. Natl. Acad. Sci. USA 90: 7381–7385.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Miller, M.D., Warmerdam, M.T., Gaston, I., Greene, W.C., and Feinberg, M.B. 1994. The human immunodeficiency virus-1 nef gene product: a positive factor for viral infection and replication in primary lymphocytes and macrophages. J. Exp. Med. 179: 101–113.

    Article  CAS  PubMed  Google Scholar 

  22. Spina, C.A., Kwoh, T.J., Chowers, M.Y., Guatelli, J.C., and Richman, D.D. 1994. The importance of nef in the induction of human immunodeficiency virus type 1 replication from primary quiescent CD4 lymphocytes. J. Exp. Med. 179: 115–123.

    Article  CAS  PubMed  Google Scholar 

  23. Aiken, C. and Trono, D. 1995. Nef stimulates human immunodeficiency virus type 1 proviral DNA synthesis. J. Virol. 69: 5048–5056.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwartz, O., Marechal, V., Danos, O., and Heard, J.-M. 1995. Human immunodeficiency virus type 1 Nef increases the efficiency of reverse transcription in the infected cell. J. Virol. 69: 4053–1059.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chowers, M.Y., Pandori, M.W., Spina, C.A., Richman, D.D., and Guatelli, J.C. 1995. The growth advantage conferred by HIV-1 nef is determined at the level of viral DNA formation and is independent of CD4 downregulation. Virology 212: 451–457.

    Article  CAS  PubMed  Google Scholar 

  26. Aiken, C. 1997. Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A. J. Virol. 71: 5871–5877.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gallay, P., Chin, D., Hope, T.J., and Trono, D. HIV-1 infection of nondividing cells mediated through the recognition of integrase by the importin/karyopherin pathway. Proc. Natl. Acad. Sci. USA. In press.

  28. Levy, D.N., Fernandes, L.S., Williams, W.V., and Weiner, D.B. 1993. Induction of cell differentiation by human immunodeficiency virus 1 vpr. Cell 72: 541–550.

    Article  CAS  PubMed  Google Scholar 

  29. Rogel, M.E., Wu, L.I., and Emerman, M. 1995. The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection. J. Virol. 69: 882–888.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kirchhoff, F., Greenough, T.C., Brettler, D.B., Sullivan, J.L., and Desrosiers, R.C. 1995. Absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N. Engl. J. Med. 332: 228–232.

    Article  CAS  PubMed  Google Scholar 

  31. Deacon, N.J., Tsykin, A., Solomon, A., Smith, K., Ludford-Menting, M., Hooker, D.J., et al. 1995. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270: 988–991.

    Article  CAS  PubMed  Google Scholar 

  32. Kestler, H.W. III, Ringler, D.J., Mori, K., Panicali, D.L., Sehgal, P.K., Daniel, M.D., et al. 1991. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65: 651–662.

    Article  CAS  PubMed  Google Scholar 

  33. Daniel, M.D., Kirchhoff, F., Czajak, S.C., Sehgal, P.K., and Desrosiers, R.C. 1992. Protective effect of a live-attenuated SIV vaccine with a deletion in the nef gene. Science 258: 1938–1941.

    Article  CAS  PubMed  Google Scholar 

  34. Wyand, M.S., Manson, K.H., Lackner, A.A., and Desrosiers, R.C. 1997. Resistance of neonatal monkeys to live attenuated vaccine strains of simian immunodeficiency virus. Nature Medicine 3: 32–36.

    Article  CAS  PubMed  Google Scholar 

  35. Gibbs, J.S., Regier, D.A., and Desrosiers, R.C. 1994. Construction and in vitro properties of SIVmac mutants with deletions in “nonessential” genes. AIDS Res. Hum. Retrovir. 10: 607–616.

    Article  CAS  PubMed  Google Scholar 

  36. Park, I.-W., Myrick, K., and Sodroski, J. 1994. Effects of vif mutations on cell-free infectivity and replication of simian immunodeficiency virus. J. AIDS 7: 1228–1236.

    CAS  Google Scholar 

  37. Lang, S.M., Strahl-Hennig, C., Coulibaly, C., Hunsmann, G., Muller, J., Muller-Hermalink, H., et al. 1993. Importance of vpr for infection of rhesus monkey with simian immunodeficiency virus. J. Virol. 67: 902–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fletcher, T.M., Brichacke, B., Sharova, N., Newman, M.A., Stivahtis, G., Sharp, P.M., et al. 1997. Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIV. EMBO J. 15: 6155–6165.

    Article  Google Scholar 

  39. Wang, B., Ge, Y.C., Palasanthiran, P., Xiang, S., Ziegler, J., Dwyer, D.E., et al. 1996. Gene defects clustered at the C-terminus of the vpr gene of HIV-1 in long-term nonprogressing mother and child pair: in vivo evolution of vpr quasispcies in blood and plasma. Virology 223: 224–232.

    Article  CAS  PubMed  Google Scholar 

  40. Brach, M.A., Hass, R., Sherman, M.L., Gunji, H., Weichselbaum, R., and Kufe, D. 1991. Ionizing radiation induces expression and binding activity of the Nuclear Factor κB. J. Clin. Invest. 88: 691–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Trono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zufferey, R., Nagy, D., Mandel, R. et al. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15, 871–875 (1997). https://doi.org/10.1038/nbt0997-871

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0997-871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing