Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

GGA proteins bind ubiquitin to facilitate sorting at the trans-Golgi network

Abstract

Ubiquitination functions as a sorting signal for lysosomal degradation of cell-surface proteins by facilitating their internalization from the plasma membrane and incorporation into lumenal vesicles of multivesicular bodies (MVBs)1. Ubiquitin may also mediate sorting of proteins from the trans-Golgi network (TGN) to the endosome, thereby preventing their appearance on the cell surface and hastening their degradation in the lysosome–vacuole2,3,4,5,6. Substantiation of a direct ubiquitin-dependent TGN sorting pathway relies in part on identifying candidate machinery that may function as a ubiquitin-sorting 'receptor'at the TGN. Members of the GGA family of coat proteins localize to the TGN and promote the incorporation of proteins into clathrin-coated vesicles destined for transport to endosomes7,8. We show that the GGA coat proteins bind directly to ubiquitin through their GAT domain and demonstrate that this interaction is required for the ubiquitin-dependent sorting of the Gap1 amino acid transporter from the TGN to endosomes. Thus, GGA proteins fulfill the role of ubiquitin sorting receptors at the TGN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Yeast Gga1p and Gga2p, and human GGA3, interact with ubiquitin.
Figure 2: The GAT domain is sufficient for binding ubiquitin.
Figure 3: The ubiquitin-binding surface for yeast Gga2 and human GGA3 GAT domains.
Figure 4: GGAs are required for normal trafficking of ubiquitinated Gap1.
Figure 5: Defects in Gap1 sorting result from deletion of the ubiquitin-binding portion of the GAT domain.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hicke, L. & Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu. Rev. Cell Dev. Biol. 19, 141–172 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Beck, T., Schmidt, A. & Hall, M.N. Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J. Cell Biol. 146, 1227–1238 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roberg, K.J., Rowley, N. & Kaiser, C.A. Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae. J. Cell Biol. 137, 1469–1482 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. De Craene, J.O., Soetens, O. & Andre, B. The Npr1 kinase controls biosynthetic and endocytic sorting of the yeast Gap1 permease. J. Biol. Chem. 276, 43939–43948 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Helliwell, S.B., Losko, S. & Kaiser, C.A. Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J. Cell Biol. 153, 649–662 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Soetens, O., De Craene, J.O. & Andre, B. Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1. J. Biol. Chem. 276, 43949–43957 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Bonifacino, J.S. The GGA proteins: adaptors on the move. Nature Rev. Mol. Cell Biol. 5, 23–32 (2004).

    Article  CAS  Google Scholar 

  8. Boman, A.L. GGA proteins: new players in the sorting game. J. Cell Sci. 114, 3413–3418 (2001).

    CAS  PubMed  Google Scholar 

  9. Finley, D., Bartel, B. & Varshavsky, A. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338, 394–401 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Boman, A.L. et al. ADP-ribosylation factor (ARF) interaction is not sufficient for yeast GGA protein function or localization. Mol. Biol. Cell 13, 3078–3095 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seroussi, E. et al. TOM1 genes map to human chromosome 22q13.1 and mouse chromosome 8C1 and encode proteins similar to the endosomal proteins HGS and STAM. Genomics 57, 380–388 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Yamakami, M., Yoshimori, T. & Yokosawa, H. Tom1, a VHS domain-containing protein, interacts with Tollip, ubiquitin, and clathrin. J. Biol. Chem. 278, 52865–52872 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Katzmann, D.J., Babst, M. & Emr, S.D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT. -I. Cell 106, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Bilodeau, P.S., Winistorfer, S.C., Kearney, W.R., Robertson, A.D. & Piper, R.C. Vps27–Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome. J. Cell Biol. 163, 237–243 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shiba, Y. et al. GAT (GGA and Tom1) domain responsible for ubiquitin binding and ubiquitination. J. Biol. Chem. DOI: 10.1074/jbc.M311702200 (2003).

  16. Hoshikawa, C., Shichiri, M., Nakamori, S. & Takagi, H. A nonconserved Ala401 in the yeast Rsp5 ubiquitin ligase is involved in degradation of Gap1 permease and stress-induced abnormal proteins. Proc. Natl Acad. Sci. USA 100, 11505–11510 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davis, N.G., Horecka, J.L. & Sprague, G.F. Jr. Cis- and trans-acting functions required for endocytosis of the yeast pheromone receptors. J. Cell Biol. 122, 53–65 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Urbanowski, J.L. & Piper, R.C. Ubiquitin sorts proteins into the intralumenal degradative compartment of the late-endosome/vacuole. Traffic 2, 622–630 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Zhdankina, O., Strand, N.L., Redmond, J.M. & Boman, A.L. Yeast GGA proteins interact with GTP-bound Arf and facilitate transport through the Golgi. Yeast 18, 1–18 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Hirst, J. et al. A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J. Cell Biol. 149, 67–80 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghosh, P., Griffith, J., Geuze, H.J. & Kornfeld, S. Mammalian GGAs act together to sort mannose 6-phosphate receptors. J. Cell Biol. 163, 755–766 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shih, S.C., Sloper-Mould, K.E. & Hicke, L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J. 19, 187–198 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hirst, J., Lindsay, M.R. & Robinson, M.S. GGAs: roles of the different domains and comparison with AP-1 and clathrin. Mol. Biol. Cell 12, 3573–3588 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sundd, M., Iverson, N., Ibarra-Molero, B., Sanchez-Ruiz, J.M. & Robertson, A.D. Electrostatic interactions in ubiquitin: stabilization of carboxylates by lysine amino groups. Biochemistry 41, 7586–7596 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Sivaraman, T., Arrington, C.B. & Robertson, A.D. Kinetics of unfolding and folding from amide hydrogen exchange in native ubiquitin. Nature Struct. Biol. 8, 331–333 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Alexeev, D. et al. Synthesis, structural and biological studies of ubiquitin mutants containing (2S, 4S)-5-fluoroleucine residues strategically placed in the hydrophobic core. Chembiochem. 4, 894–896 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Bilodeau, P.S., Urbanowski, J.L., Winistorfer, S.C. & Piper, R.C. The Vps27p–Hse1p complex binds ubiquitin and mediates endosomal protein sorting. Nature Cell Biol. 4, 534–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Longtine, M.S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant GM58202 (R.C.P.), NIH grant GM46869 (A.D.R.) and an American Cancer Society grant RSG-03-020-01-CSM (A.L.B. and P.M.S). W.R.K. and M.M.A. were supported by the University of Iowa College of Medicine. We would like to thank S. Rensink for help with the two-hybrid analysis and D. Connor with strain construction. This work is dedicated to the memory of Annette Lorraine Boman who died in March 2003. We remain inspired by her insight, propelled by her enthusiasm, and encouraged by her love of life and science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patricia M. Scott or Robert C. Piper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures

Supplementary Information, Fig. S1 (PDF 325 kb)

Supplementary Information, Fig. S2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, P., Bilodeau, P., Zhdankina, O. et al. GGA proteins bind ubiquitin to facilitate sorting at the trans-Golgi network. Nat Cell Biol 6, 252–259 (2004). https://doi.org/10.1038/ncb1107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing