Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase

Abstract

Imaging studies implicate microtubule targeting of focal adhesions in focal adhesion disassembly, although the molecular mechanism is unknown. Here, we develop a model system of focal adhesion disassembly based on the finding that microtubule regrowth after nocodazole washout induces disassembly of focal adhesions, and that this disassembly occurs independently of Rho and Rac, but depends on focal adhesion kinase (FAK) and dynamin. During disassembly, dynamin interacts with FAK and colocalizes with focal adhesions. Inhibition of dynamin prevents migration of cells with a focal adhesion phenotype. Our results show that focal adhesion disassembly involves microtubules, dynamin and FAK, and is not simply the reversal of focal adhesion formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microtubule regrowth induces focal adhesion disassembly.
Figure 2: Dynamics of GFP–β1-integrin during microtubule regrowth after nocodazole washout.
Figure 3: Microtubule-induced disassembly of focal adhesions is independent of Rho and Rac.
Figure 4: Microtubule-induced disassembly of focal adhesions is dependent on dynamin.
Figure 5: Dynamin is colocalized near focal adhesions and interacts with FAK during microtubule-induced focal adhesion disassembly.
Figure 6: FAK enhances dynamin localization to focal adhesions and rescues defective microtubule-induced disassembly in the FAK−/− fibroblasts.
Figure 7: Expression of dominant-negative dynamin inhibits directed cell migration into a wound.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Webb, D.J., Parsons, J.T. & Horwitz, A.F. Adhesion assembly, disassembly and turnover in migrating cells — over and over and over again. Nature Cell Biol. 4, E97–E100 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Sastry, S.K. & Burridge, K. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell Res. 261, 25–36 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Small, J.V., Stradal, T., Vignal, E. & Rottner, K. The lamellipodium: where motility begins. Trends Cell Biol. 12, 112–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Webb, D.J. et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biol. 6, 154–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Arthur, W.T., Petch, L.A. & Burridge, K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr. Biol. 10, 719–722 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Ren, X.D. et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci. 113, 3673–3678 (2000).

    CAS  PubMed  Google Scholar 

  8. Franco, S.J. et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nature Cell Biol. 6, 977–983 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Kaverina, I., Krylyshkina, O. & Small, J.V. Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J. Cell Biol. 146, 1033–1044 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Small, J.V., Geiger, B., Kaverina, I. & Bershadsky, A. How do microtubules guide migrating cells? Nature Rev. Mol. Cell Biol. 3, 957–964 (2002).

    Article  CAS  Google Scholar 

  11. Krylyshkina, O. et al. Modulation of substrate adhesion dynamics via microtubule targeting requires kinesin-1. J. Cell Biol. 156, 349–359 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bershadsky, A., Chausovsky, A., Becker, E., Lyubimova, A. & Geiger, B. Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr. Biol. 6, 1279–1289 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, B.P., Chrzanowska-Wodnicka, M. & Burridge, K. Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho. Cell Adhes. Commun. 5, 249–255 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Ren, X.D., Kiosses, W.B. & Schwartz, M.A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hauck, C.R., Hsia, D.A. & Schlaepfer, D.D. The focal adhesion kinase — a regulator of cell migration and invasion. IUBMB Life 53, 115–119 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Smilenov, L.B., Mikhailov, A., Pelham, R.J., Marcantonio, E.E. & Gundersen, G.G. Focal adhesion motility revealed in stationary fibroblasts. Science 286, 1172–1174 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Krylyshkina, O. et al. Nanometer targeting of microtubules to focal adhesions. J. Cell Biol. 161, 853–859 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ory, S., Destaing, O. & Jurdic, P. Microtubule dynamics differentially regulates Rho and Rac activity and triggers Rho-independent stress fiber formation in macrophage polykaryons. Eur. J. Cell Biol. 81, 351–362 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Cook, T.A., Nagasaki, T. & Gundersen, G.G. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J. Cell Biol. 141, 175–185 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Waterman-Storer, C.M., Worthylake, R.A., Liu, B.P., Burridge, K. & Salmon, E.D. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nature Cell Biol. 1, 45–50 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Sanders, L.C., Matsumura, F., Bokoch, G.M. & de Lanerolle, P. Inhibition of myosin light chain kinase by p21-activated kinase. Science 283, 2083–2085 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Sander, E.E., ten Klooster, J.P., van Delft, S., van der Kammen, R.A. & Collard, J.G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 147, 1009–1022 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sieg, D.J., Hauck, C.R. & Schlaepfer, D.D. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J. Cell Sci. 112, 2677–2691 (1999).

    CAS  PubMed  Google Scholar 

  24. Schlaepfer, D.D., Hauck, C.R. & Sieg, D.J. Signaling through focal adhesion kinase. Prog. Biophys. Mol. Biol. 71, 435–478 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Hagel, M. et al. The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol. Cell. Biol. 22, 901–915 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klinghoffer, R.A., Sachsenmaier, C., Cooper, J.A. & Soriano, P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459–2471 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Regen, C.M. & Horwitz, A.F. Dynamics of β1 integrin-mediated adhesive contacts in motile fibroblasts. J. Cell Biol. 119, 1347–1359 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Pierini, L.M., Lawson, M.A., Eddy, R.J., Hendey, B. & Maxfield, F.R. Oriented endocytic recycling of α5β1 in motile neutrophils. Blood 95, 2471–2480 (2000).

    CAS  PubMed  Google Scholar 

  29. Conner, S.D. & Schmid, S.L. Regulated portals of entry into the cell. Nature 422, 37–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Herskovits, J.S., Burgess, C.C., Obar, R.A. & Vallee, R.B. Effects of mutant rat dynamin on endocytosis. J. Cell Biol. 122, 565–578 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nature Cell Biol. 2, 125–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Cao, H., Garcia, F. & McNiven, M.A. Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell 9, 2595–2609 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ochoa, G.C. et al. A functional link between dynamin and the actin cytoskeleton at podosomes. J. Cell Biol. 150, 377–389 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Palazzo, A.F., Eng, C.H., Schlaepfer, D.D., Marcantonio, E.E. & Gundersen, G.G. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303, 836–839 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Chan, P.Y., Kanner, S.B., Whitney, G. & Aruffo, A. A transmembrane-anchored chimeric focal adhesion kinase is constitutively activated and phosphorylated at tyrosine residues identical to pp125FAK. J. Biol. Chem. 269, 20567–20574 (1994).

    CAS  PubMed  Google Scholar 

  36. Herskovits, J.S., Shpetner, H.S., Burgess, C.C. & Vallee, R.B. Microtubules and Src homology 3 domains stimulate the dynamin GTPase via its C-terminal domain. Proc. Natl Acad. Sci. USA 90, 11468–11472 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schlaepfer, D.D. & Hunter, T. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol. Cell. Biol. 16, 5623–5633 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kharbanda, S. et al. Stimulation of human monocytes with macrophage colony-stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp125FAK and dynamin. Proc. Natl Acad. Sci. USA 92, 6132–6136 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dujardin, D.L. et al. A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol. 163, 1205–1211 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maddox, A. & Burridge, K. RhoA is required for cortical retraction and rigidity during mitotic cell rounding. J. Cell Biol. 160, 255–265 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schafer, D.A. Regulating actin dynamics at membranes: a focus on dynamin. Traffic 5, 463–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Orth, J.D. & McNiven, M.A. Dynamin at the actin-membrane interface. Curr. Opin. Cell Biol. 15, 31–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Shpetner, H.S. & Vallee, R.B. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature 355, 733–735 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Schlunck, G. et al. Modulation of Rac localization and function by dynamin. Mol. Biol. Cell 15, 256–267 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gundersen, G.G., Kim, I. & Chapin, C.J. Induction of stable microtubules in 3T3 fibroblasts by TGF-β and serum. J. Cell Sci. 107, 645–659 (1994).

    CAS  PubMed  Google Scholar 

  46. Kilmartin, J.V., Wright, B. & Milstein, C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J. Cell Biol. 93, 576–582 (1982).

    Article  CAS  PubMed  Google Scholar 

  47. Gundersen, G.G., Kalnoski, M.H. & Bulinski, J.C. Distinct populations of microtubules: tyrosinated and nontyrosinated α tubulin are distributed differently in vivo. Cell 38, 779–789 (1984).

    Article  CAS  PubMed  Google Scholar 

  48. Palazzo, A.F., Cook, T.A., Alberts, A.S. & Gundersen, G.G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol. 3, 723–729 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Kranenburg, O., Verlaan, I. & Moolenaar, W. Gi-mediated tyrosine phosphorylation of Grb2(growth-factor-receptor-bound protein 2)-bound dynamin-II by lysophosphatidic acid. Biochem. J. 339, 11–14 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mikhailov, A. & Gundersen, G.G. Relationship between microtubule dynamics and lamellipodium formation revealed by direct imaging of microtubules in cells treated with nocodazole or taxol. Cell Motil. Cytoskeleton 41, 325–440 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the laboratory, and E. Marcantonio and R. Vallee for critically reading the manuscript. We are indebted to R. Vallee for dynamin constructs and antibodies. Supported by NIH grant GM68595 (G.G.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg G. Gundersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary figures S1, S2 and S3 (PDF 1107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezratty, E., Partridge, M. & Gundersen, G. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat Cell Biol 7, 581–590 (2005). https://doi.org/10.1038/ncb1262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1262

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing