Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Osteogenic transcription factor Runx2 is a maternal determinant of dorsoventral patterning in zebrafish

Abstract

The maternal genome greatly influences vertebrate embryogenesis before activation of zygotic transcription. Dorsoventral patterning is initiated by maternal factors1,2,3, but the molecular pathways involved are incompletely understood. In frogs and fish, localized zygotic domains are induced whereby cells either express dorsal or ventral genes1,2. Wnt/β-catenin signalling promotes expression of the earliest dorsal zygotic genes4. Among key zygotic ventralizing factors are the bone morphogenetic proteins (Bmps)5,6 and the Vent homeodomain family2,7,8,9,10; the latter act as repressors of dorsal organizer gene transcription. Here we show that Runx2, a transcription factor essential for bone formation, is an important maternal determinant of ventral zygotic genes in zebrafish. Depletion of maternal Runx2b type2 strongly dorsalizes embryos, due to loss of the earliest zygotic expression of vox, vent and ved, resulting in expansion of dorsal gene expression. To date, Runx2b is the only known regulator of vox, vent and ved at the onset of zygotic transcription; we show that this regulation is direct. Runx2 transcripts are processed in mature mouse oocytes11 and we show that murine Runx2 type2 can substitute for the zebrafish orthologue in its ventralizing function, suggesting that Runx2 may have an evolutionarily conserved role in axis formation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A potential role for maternal Runx2bt2 in zebrafish axis formation.
Figure 2: Depletion of maternal Runx2bt2 compromises ventrally derived tissues and expands expression of dorsal organizer genes to ventrolateral regions.
Figure 3: Embryos expressing runx2bt2 fused to the transcriptional repressor engrailed phenocopied the dorsalized runx2bt2 atg morphants.
Figure 4: Maternal Runx2bt2 regulates expression of the Vent family of transcriptional repressors.
Figure 5: Runx2bt2 directly regulates ved transcription.

Similar content being viewed by others

References

  1. Heasman, J. Patterning the early Xenopus embryo. Development 133, 1205–1217 (2006).

    Article  CAS  Google Scholar 

  2. Schier, A. F. & Talbot, W. S. Molecular genetics of axis formation in zebrafish. Annu. Rev. Genet. 39, 561–613 (2005).

    Article  CAS  Google Scholar 

  3. Wang, H. & Dey, S. K. Roadmap to embryo implantation: clues from mouse models. Nature Rev. Genet. 7, 185–199 (2006).

    Article  Google Scholar 

  4. Kelly, C., Chin, A. J., Leatherman, J. L., Kozlowski, D. J. & Weinberg, E. S. Maternally controlled (β)-catenin-mediated signaling is required for organizer formation in the zebrafish. Development 127, 3899–3911 (2000).

    CAS  PubMed  Google Scholar 

  5. Kishimoto, Y., Lee, K. H., Zon, L., Hammerschmidt, M. & Schulte-Merker, S. The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124, 4457–4466 (1997).

    CAS  PubMed  Google Scholar 

  6. Schmid, B. et al. Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 127, 957–967 (2000).

    CAS  PubMed  Google Scholar 

  7. Imai, Y. et al. The homeobox genes vox and vent are redundant repressors of dorsal fates in zebrafish. Development 128, 2407–2420 (2001).

    CAS  PubMed  Google Scholar 

  8. Gilardelli, C. N., Pozzoli, O., Sordino, P., Matassi, G. & Cotelli, F. Functional and hierarchical interactions among zebrafish vox/vent homeobox genes. Dev. Dyn. 230, 494–508 (2004).

    Article  CAS  Google Scholar 

  9. Kawahara, A., Wilm, T., Solnica-Krezel, L. & Dawid, I. B. Antagonistic role of vega1 and bozozok/dharma homeobox genes in organizer formation. Proc. Natl Acad. Sci. USA 97, 12121–12126 (2000).

    Article  CAS  Google Scholar 

  10. Shimizu, T. et al. A novel repressor-type homeobox gene, ved, is involved in dharma/bozozok-mediated dorsal organizer formation in zebrafish. Mech. Dev. 118, 125–138 (2002).

    Article  CAS  Google Scholar 

  11. Hernandez-Gonzalez, I. et al. Gene expression profiles of cumulus cell oocyte complexes during ovulation reveal cumulus cells express neuronal and immune-related genes: does this expand their role in the ovulation process? Mol. Endocrinol. 20, 1300–1321 (2006).

    Article  CAS  Google Scholar 

  12. Gore, A. V. et al. The zebrafish dorsal axis is apparent at the four-cell stage. Nature 438, 1030–1035 (2005).

    Article  CAS  Google Scholar 

  13. Pei, W., Williams, P. H., Clark, M. D., Stemple, D. L. & Feldman, B. Environmental and genetic modifiers of squint penetrance during zebrafish embryogenesis. Dev. Biol. 308, 368–378 (2007).

    Article  CAS  Google Scholar 

  14. Leung, T. et al. bozozok directly represses bmp2b transcription and mediates the earliest dorsoventral asymmetry of bmp2b expression in zebrafish. Development 130, 3639–3649 (2003).

    Article  CAS  Google Scholar 

  15. Sidi, S., Goutel, C., Peyrieras, N. & Rosa, F. M. Maternal induction of ventral fate by zebrafish radar. Proc. Natl Acad. Sci. USA 100, 3315–3320 (2003).

    Article  CAS  Google Scholar 

  16. Reim, G. & Brand, M. Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4. Development 133, 2757–2770 (2006).

    Article  CAS  Google Scholar 

  17. Blyth, K., Cameron, E. R. & Neil, J. C. The RUNX genes: gain or loss of function in cancer. Nature Rev. Cancer 5, 376–387 (2005).

    Article  CAS  Google Scholar 

  18. Ito, Y. & Miyazono, K. RUNX transcription factors as key targets of TGF-β superfamily signaling. Curr. Opin. Genet. Dev. 13, 43–47 (2003).

    Article  CAS  Google Scholar 

  19. Flores, M. V., Lam, E. Y., Crosier, P. & Crosier, K. A hierarchy of Runx transcription factors modulate the onset of chondrogenesis in craniofacial endochondral bones in zebrafish. Dev. Dyn. 235, 3166–3176 (2006).

    Article  CAS  Google Scholar 

  20. Flores, M. V. et al. Duplicate zebrafish runx2 orthologues are expressed in developing skeletal elements. Gene Expr. Patterns 4, 573–581 (2004).

    Article  CAS  Google Scholar 

  21. Ramel, M. C. & Lekven, A. C. Repression of the vertebrate organizer by Wnt8 is mediated by Vent and Vox. Development 131, 3991–4000 (2004).

    Article  CAS  Google Scholar 

  22. Ramel, M. C., Buckles, G. R., Baker, K. D. & Lekven, A. C. WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation. Dev. Biol. 287, 237–248 (2005).

    Article  CAS  Google Scholar 

  23. Sander, V., Reversade, B. & De Robertis, E. M. The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. EMBO J. 26, 2955–2965 (2007).

    Article  CAS  Google Scholar 

  24. Ueta, C. et al. Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J. Cell Biol. 153, 87–100 (2001).

    Article  CAS  Google Scholar 

  25. Mullins, M. C. et al. Genes establishing dorsoventral pattern formation in the zebrafish embryo: the ventral specifying genes. Development 123, 81–93 (1996).

    CAS  PubMed  Google Scholar 

  26. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. & Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747–754 (1997).

    Article  CAS  Google Scholar 

  27. Canalis, E., Deregowski, V., Pereira, R. C. & Gazzerro, E. Signals that determine the fate of osteoblastic cells. J. Endocrinol. Invest. 28, 3–7 (2005).

    CAS  PubMed  Google Scholar 

  28. Canalis, E., Economides, A. N. & Gazzerro, E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev. 24, 218–235 (2003).

    Article  CAS  Google Scholar 

  29. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  Google Scholar 

  30. Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet. 26, 216–220 (2000).

    Article  CAS  Google Scholar 

  31. Bjornson, C. R. et al. Eomesodermin is a localized maternal determinant required for endoderm induction in zebrafish. Dev. Cell. 9, 523–533 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Alhad Mahagaonkar and Lisa Pullin for technical assistance. We are grateful to M. Hammerschmidt, M. Hibi, T. Komori, D. Kimelman and M. Mullins for sharing their reagents. We thank M. Hibi for his advice on the manuscript. The work was funded by grants from the Health Research Council of New Zealand and the Foundation for Research, Science and Technology, New Zealand. E.Y.L. was supported by Bright Futures Top Achievers Doctoral Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

M. V. C. F. designed and performed the experimental work, analysed the data and wrote the manuscript. E. Y. L. performed some experiments and the statistical analysis. K. E. C. and P. S. C. planned the project and reviewed the manuscript.

Corresponding author

Correspondence to Philip S. Crosier.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4 and Supplementary table S1 (PDF 653 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores, M., Lam, E., Crosier, K. et al. Osteogenic transcription factor Runx2 is a maternal determinant of dorsoventral patterning in zebrafish. Nat Cell Biol 10, 346–352 (2008). https://doi.org/10.1038/ncb1697

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1697

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing