Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Willin and Par3 cooperatively regulate epithelial apical constriction through aPKC-mediated ROCK phosphorylation

Abstract

Apical-domain constriction is important for regulating epithelial morphogenesis. Epithelial cells are connected by apical junctional complexes (AJCs) that are lined with circumferential actomyosin cables. The contractility of these cables is regulated by Rho-associated kinases (ROCKs). Here, we report that Willin (a FERM-domain protein) and Par3 (a polarity-regulating protein) cooperatively regulate ROCK-dependent apical constriction. We found that Willin recruits aPKC and Par6 to the AJCs, independently of Par3. Simultaneous depletion of Willin and Par3 completely removed aPKC and Par6 from the AJCs and induced apical constriction. Induced constriction was through upregulation of the level of AJC-associated ROCKs, which was due to loss of aPKC. Our results indicate that aPKC phosphorylates ROCK and suppresses its junctional localization, thereby allowing cells to retain normally shaped apical domains. Thus, we have uncovered a Willin/Par3–aPKC–ROCK pathway that controls epithelial apical morphology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Willin recruits aPKC to AJCs in MDCK cells.
Figure 2: Willin and Par3 cooperatively regulate aPKC localization and apical constriction in EpH4 cells.
Figure 3: Interaction between aPKC and Par3/Willin is necessary to regulate apical actomyosin activity.
Figure 4: aPKC phosphorylates ROCK1.
Figure 5: ROCK1 phosphorylation regulates its distribution.

Similar content being viewed by others

References

  1. Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8, 633–644 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Blankenship, J. T., Backovic, S. T., Sanny, J. S., Weitz, O. & Zallen, J. A. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11, 459–470 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Bertet, C., Sulak, L. & Lecuit, T. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429, 667–671 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Vicente-Manzanares, M., Ma, X., Adelstein, R. S. & Horwitz, A. R. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10, 778–790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Riento, K. & Ridley, A. J. Rocks: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. 4, 446–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Hildebrand, J. D. Shroom regulates epithelial cell shape via the apical positioning of an actomyosin network. J. Cell Sci. 118, 5191–5203 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Nishimura, T. & Takeichi, M. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development 135, 1493–1502 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Nakajima, H. & Tanoue, T. Epithelial cell shape is regulated by Lulu proteins via myosin-II. J. Cell Sci. 123, 555–566 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Suzuki, A. & Ohno, S. The PAR-aPKC system: lessons in polarity. J. Cell Sci. 119, 979–987 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–106 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6links Par3 and atypical protein kinase C to Cdc42. Nat. Cell Biol. 2, 531–539 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki, A. et al. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures. J. Cell Biol. 152, 1183–1196 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophilaby the Par-3-related PDZ-domain protein Bazooka. Curr. Biol. 8, 1357–1365 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Wodarz, A., Ramrath, A., Grimm, A. & Knust, E. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J. Cell Biol. 150, 1361–1374 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Petronczki, M. & Knoblich, J. A. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila . Nat. Cell Biol. 3, 43–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Gunn-Moore, F.J. et al. A novel 4.1 ezrin radixin moesin (FERM)-containing protein, ‘Willin’. FEBS Lett. 579, 5089–5094 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Pan, D. The Hippo signaling pathway in development and cancer. Dev. Cell 19, 491–505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hamaratoglu, F. et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat. Cell Biol. 8, 27–36 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, X. & Macara, I. G. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat. Cell Biol. 7, 262–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Y., Fisher, D. A. & Storm, D. R. Intracellular sorting of neuromodulin (GAP-43) mutants modified in the membrane targeting domain. J. Neurosci. 14, 5807–5817 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ebnet, K. et al. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J. 20, 3738–3748 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Horikoshi, Y. et al. Interaction between PAR-3 and the aPKC-PAR-6 complex is indispensable for apical domain development of epithelial cells. J. Cell Sci. 122, 1595–1606 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. McCaffrey, L. M. & Macara, I. G. The Par3/aPKC interaction is essential for end bud remodeling and progenitor differentiation during mammary gland morphogenesis. Genes Dev. 23, 1450–1460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hao, Y. et al. Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical pins. Curr. Biol. 20, 1809–1818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Warner, S. J. & Longmore, G. D. Cdc42 antagonizes Rho1 activity atadherens junctions to limit epithelial cell apical tension. J. Cell Biol. 187, 119–133 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Georgiou, M., Marinari, E., Burden, J. & Baum, B. Cdc42, Par6, and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability. Curr. Biol. 18, 1631–1638 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Leibfried, A., Fricke, R., Morgan, M. J., Bogdan, S. & Bellaiche, Y. Drosophila Cip4 and WASp define a branch of the Cdc42-Par6-aPKC pathway regulating E-cadherin endocytosis. Curr. Biol. 18, 1639–1648 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Morais-de-Sa, E., Mirouse, V. & St Johnston, D. aPKC phosphorylation of Bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell 141, 509–523 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zallen, J. A. & Wieschaus, E. Patterned gene expression directs bipolar planar polarity in Drosophila . Dev. Cell 6, 343–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Simoes Sde, M. et al. Rho-kinase directs Bazooka/Par-3 planar polarity during Drosophila axis elongation. Dev. Cell 19, 377–388 (2010).

    Article  PubMed  Google Scholar 

  31. Hamaratoglu, F. et al. The Hippo tumor-suppressor pathway regulates apical-domain size in parallel to tissue growth. J. Cell Sci. 122, 2351–2359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Genevet, A. et al. The Hippo pathway regulates apical-domain size independently of its growth-control function. J. Cell Sci. 122, 2360–2370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ishiuchi, T., Misaki, K., Yonemura, S., Takeichi, M. & Tanoue, T. Mammalian Fat and Dachsous cadherins regulate apical membrane organization in the embryonic cerebral cortex. J. Cell Biol. 185, 959–967 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klockenbusch, C. & Kast, J. Optimization of formaldehyde cross-linking for protein interaction analysis of non-tagged integrin β1. J. Biomed. Biotechnol. 2010, 927585 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Amano, M., Fukata, Y., Shimokawa, H. & Kaibuchi, K. Purification and in vitro activity of Rho-associated kinase. Methods Enzymol. 325, 149–155 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to K. Shinmyozu for LC-MS/MS analysis. We thank S. Ohno and S. Yonemura for reagents; M. Nomura, H. Saitou and Y. Inoue for technical support; and T. Otani for comments on the research. This work was supported by the programme Grants-in-Aid for Specially Promoted Research of the Ministry of Education, Science, Sports, and Culture of Japan to M.T. T.I. is a recipient of the RIKEN Junior Research Associate fellowship.

Author information

Authors and Affiliations

Authors

Contributions

T.I. designed and conducted experiments. T.I. and M.T. wrote the paper.

Corresponding author

Correspondence to Masatoshi Takeichi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishiuchi, T., Takeichi, M. Willin and Par3 cooperatively regulate epithelial apical constriction through aPKC-mediated ROCK phosphorylation. Nat Cell Biol 13, 860–866 (2011). https://doi.org/10.1038/ncb2274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing