Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial regulation of VEGF receptor endocytosis in angiogenesis

Abstract

Activities as diverse as migration, proliferation and patterning occur simultaneously and in a coordinated fashion during tissue morphogenesis. In the growing vasculature, the formation of motile, invasive and filopodia-carrying endothelial sprouts is balanced with the stabilization of blood-transporting vessels. Here, we show that sprouting endothelial cells in the retina have high rates of VEGF uptake, VEGF receptor endocytosis and turnover. These internalization processes are opposed by atypical protein kinase C activity in more stable and mature vessels. aPKC phosphorylates Dab2, a clathrin-associated sorting protein that, together with the transmembrane protein ephrin-B2 and the cell polarity regulator PAR-3, enables VEGF receptor endocytosis and downstream signal transduction. Accordingly, VEGF receptor internalization and the angiogenic growth of vascular beds are defective in loss-of-function mice lacking key components of this regulatory pathway. Our work uncovers how vessel growth is dynamically controlled by local VEGF receptor endocytosis and the activity of cell polarity proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High VEGF receptor turnover in the angiogenic front.
Figure 2: Spatial differences in VEGF uptake in the retina.
Figure 3: Identification of Dab2 and PAR-3 as interactors of ephrin-B2 and VEGF receptors.
Figure 4: Dab2 and PAR-3 control VEGF receptor internalization.
Figure 5: Endothelial Dab2 and PAR-3 regulate angiogenic vessel growth.
Figure 6: Negative regulation of VEGF receptor internalization by aPKC.
Figure 7: Increased VEGF uptake and sprouting in the PrkciiΔEC central retina.
Figure 8: Spatial regulation of VEGFR endocytosis.

Similar content being viewed by others

References

  1. Palamidessi, A. et al. Endocytic trafficking of Rac is required for the spatial restriction of signalling in cell migration. Cell 134, 135–147 (2008).

    Article  CAS  Google Scholar 

  2. Le Roy, C. & Wrana, J. L. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat. Rev. Mol. Cell Biol. 6, 112–126 (2005).

    Article  CAS  Google Scholar 

  3. Bush, J. O. & Soriano, P. Ephrin-B1 forward signalling regulates craniofacial morphogenesis by controlling cell proliferation across Eph-ephrin boundaries. Genes Dev. 24, 2068–2080 (2010).

    Article  CAS  Google Scholar 

  4. Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue. Nat. Rev. Mol. Cell Biol. 9, 887–901 (2008).

    Article  CAS  Google Scholar 

  5. Olsson, A. K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling—in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359–371 (2006).

    Article  CAS  Google Scholar 

  6. Lohela, M., Bry, M., Tammela, T. & Alitalo, K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr. Opin. Cell Biol. 21, 154–165 (2009).

    Article  CAS  Google Scholar 

  7. Nilsson, I. et al. VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J. 29, 1377–1388 (2010).

    Article  CAS  Google Scholar 

  8. Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12, 943–953 (2010).

    Article  CAS  Google Scholar 

  9. Hellstrom, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007).

    Article  Google Scholar 

  10. Benedito, R. et al. The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124–1135 (2009).

    Article  CAS  Google Scholar 

  11. Jakobsson, L., Bentley, K. & Gerhardt, H. VEGFRs and Notch: a dynamic collaboration in vascular patterning. Biochem. Soc. Trans. 37, 1233–1236 (2009).

    Article  CAS  Google Scholar 

  12. Sawamiphak, S. et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465, 487–491 (2010).

    Article  CAS  Google Scholar 

  13. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    Article  CAS  Google Scholar 

  14. Bochenek, M. L., Dickinson, S., Astin, J. W., Adams, R. H. & Nobes, C. D. Ephrin-B2 regulates endothelial cell morphology and motility independently of Eph-receptor binding. J. Cell Sci. 123, 1235–1246 (2010).

    Article  CAS  Google Scholar 

  15. Carmeliet, P., De Smet, F., Loges, S. & Mazzone, M. Branching morphogenesis and antiangiogenesis candidates: tip cells lead the way. Nat. Rev. Clin. Oncol. 6, 315–326 (2009).

    Article  CAS  Google Scholar 

  16. Gerhardt, H. et al. VEGF guides angiogenic sprouting using endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003).

    Article  CAS  Google Scholar 

  17. Traub, L. M. Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J. Cell Biol. 163, 203–208 (2003).

    Article  CAS  Google Scholar 

  18. Stone, J. et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15, 4738–4747 (1995).

    Article  CAS  Google Scholar 

  19. Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660 (2008).

    Article  CAS  Google Scholar 

  20. Benedito, R. et al. Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF-VEGFR2 signalling. Nature 484, 110–114 (2012).

    Article  CAS  Google Scholar 

  21. Bruns, A. F. et al. Ligand-stimulated VEGFR2 signalling is regulated by co-ordinated trafficking and proteolysis. Traffic 11, 161–174 (2010).

    Article  CAS  Google Scholar 

  22. Manickam, V. et al. Regulation of vascular endothelial growth factor receptor 2 trafficking and angiogenesis by Golgi localized t-SNARE syntaxin 6. Blood 117, 1425–1435 (2011).

    Article  CAS  Google Scholar 

  23. Meyer, R. D. et al. PEST motif serine and tyrosine phosphorylation controls vascular endothelial growth factor receptor 2 stability and downregulation. Mol. Cell Biol. 31, 2010–2025 (2011).

    Article  CAS  Google Scholar 

  24. Makinen, T. et al. PDZ interaction site in ephrinB2 is required for the remodelling of lymphatic vasculature. Genes Dev. 19, 397–410 (2005).

    Article  Google Scholar 

  25. Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat. Cell Biol. 9, 1066–1073 (2007).

    Article  CAS  Google Scholar 

  26. Nishimura, T. & Kaibuchi, K. Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3. Dev. Cell 13, 15–28 (2007).

    Article  CAS  Google Scholar 

  27. Lee, H. S., Nishanian, T. G., Mood, K., Bong, Y. S. & Daar, I. O. EphrinB1 controls cell–cell junctions through the Par polarity complex. Nat. Cell Biol. 10, 979–986 (2008).

    Article  CAS  Google Scholar 

  28. Mishra, S. K. et al. Disabled-2 exhibits the properties of a cargo-selective endocytic clathrin adaptor. EMBO J. 21, 4915–4926 (2002).

    Article  CAS  Google Scholar 

  29. Joukov, V. et al. Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J. 16, 3898–3911 (1997).

    Article  CAS  Google Scholar 

  30. Lanahan, A. A. et al. VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev. Cell 18, 713–724 (2010).

    Article  CAS  Google Scholar 

  31. Zachary, I. & Gliki, G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc. Res. 49, 568–581 (2001).

    Article  CAS  Google Scholar 

  32. Friedl, P. & Gilmour, D. Collective cell migration in morphogenesis, regeneration and cancer. Nat. Rev. Mol. Cell Biol. 10, 445–457 (2009).

    Article  CAS  Google Scholar 

  33. Suzuki, A. & Ohno, S. The PAR-aPKC system: lessons in polarity. J. Cell Sci. 119, 979–987 (2006).

    Article  CAS  Google Scholar 

  34. Goldstein, B. & Macara, I. G. The PAR proteins: fundamental players in animal cell polarization. Dev. Cell 13, 609–622 (2007).

    Article  CAS  Google Scholar 

  35. Lampugnani, M. G. et al. CCM1 regulates vascular-lumen organization by inducing endothelial polarity. J. Cell Sci. 123, 1073–1080 (2010).

    Article  CAS  Google Scholar 

  36. Iden, S. et al. A distinct PAR complex associates physically with VE-cadherin in vertebrate endothelial cells. EMBO Rep. 7, 1239–1246 (2006).

    Article  CAS  Google Scholar 

  37. Titchenell, P. M. et al. Novel atypical PKC inhibitors prevent vascular endothelial growth factor-induced blood-retinal barrier dysfunction. Biochem. J. 446, 455–467 (2012).

    Article  CAS  Google Scholar 

  38. Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003).

    Article  CAS  Google Scholar 

  39. Aranda, V., Nolan, M. E. & Muthuswamy, S. K. Par complex in cancer: a regulator of normal cell polarity joins the dark side. Oncogene 27, 6878–6887 (2008).

    Article  CAS  Google Scholar 

  40. Pasquale, E. B. Eph-ephrin bidirectional signalling in physiology and disease. Cell 133, 38–52 (2008).

    Article  CAS  Google Scholar 

  41. Martin-Belmonte, F. & Mostov, K. Regulation of cell polarity during epithelial morphogenesis. Curr. Opin. Cell Biol. 20, 227–234 (2008).

    Article  CAS  Google Scholar 

  42. Iden, S. & Collard, J. G. Crosstalk between small GTPases and polarity proteins in cell polarization. Nat. Rev. Mol. Cell Biol. 9, 846–859 (2008).

    Article  CAS  Google Scholar 

  43. Kim, J. D. et al. Context-dependent proangiogenic function of bone morphogenetic protein signalling is mediated by disabled homolog 2. Dev. Cell 23, 441–448 (2012).

    Article  CAS  Google Scholar 

  44. Claxton, S. et al. Efficient, inducible Cre-recombinase activation in vascular endothelium. Genesis 46, 74–80 (2008).

    Article  CAS  Google Scholar 

  45. Haigh, J. J. et al. Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signalling. Dev. Biol. 262, 225–241 (2003).

    Article  CAS  Google Scholar 

  46. Morris, S. M., Tallquist, M. D., Rock, C. O. & Cooper, J. A. Dual roles for the Dab2 adaptor protein in embryonic development and kidney transport. EMBO J. 21, 1555–1564 (2002).

    Article  CAS  Google Scholar 

  47. Hirose, T. et al. PAR3 is essential for cyst-mediated epicardial development by establishing apical cortical domains. Development 133, 1389–1398 (2006).

    Article  CAS  Google Scholar 

  48. Hashimoto, N. et al. PKClambda regulates glucose-induced insulin secretion through modulation of gene expression in pancreatic beta cells. J. Clin. Invest. 115, 138–145 (2005).

    Article  CAS  Google Scholar 

  49. Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Article  CAS  Google Scholar 

  50. Wisniewski, J. R., Zougman, A. & Mann, M. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J. Proteome Res. 8, 5674–5678 (2009).

    Article  CAS  Google Scholar 

  51. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  Google Scholar 

  52. Nakayama, M. et al. Rho-kinase phosphorylates PAR-3 and disrupts PAR complex formation. Dev. Cell 14, 205–215 (2008).

    Article  CAS  Google Scholar 

  53. Pitulescu, M. E., Schmidt, I., Benedito, R. & Adams, R. H. Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice. Nat. Protoc. 5, 1518–1534 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Ebnet and T. Nishioka for reagents and discussions. The Max Planck Society, the German Research Foundation program SFB 629 (R.H.A.), the EMBO LTF programme, the Japan Society for the Promotion of Science (M.N.), and the US National Institutes of Health (J.A.C) provided funding.

Author information

Authors and Affiliations

Authors

Contributions

M.N., K.K. and R.H.A. designed the study. M.N., H.Y., H.C.A.D. and N.I. carried out the identification of ephrin-B2 interacting proteins. M.v.L. purified PAR-3 antibodies and GST-fusion proteins. T.H., S.O., G.B., D.V. and J.A.C. generated mouse mutants or lines. All other experiments were carried out by M.N., A.N. and S.H.; M.N. and R.H.A. wrote the manuscript.

Corresponding authors

Correspondence to Masanori Nakayama or Ralf H. Adams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3327 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakayama, M., Nakayama, A., van Lessen, M. et al. Spatial regulation of VEGF receptor endocytosis in angiogenesis. Nat Cell Biol 15, 249–260 (2013). https://doi.org/10.1038/ncb2679

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2679

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing