Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits

Abstract

As a final step in endocytosis, clathrin-coated pits must separate from the plasma membrane and move into the cytosol as a coated vesicle. Because these events involve minute movements that conventional light microscopy cannot resolve, they have not been observed directly and their dynamics remain unexplored. Here, we used evanescent field (EF) microscopy to observe single clathrin-coated pits or vesicles as they draw inwards from the plasma membrane and finally lose their coats. This inward movement occurred immediately after a brief burst of dynamin recruitment and was accompanied by transient actin assembly. Therefore, dynamin may provide the trigger and actin may provide the force for movement into the cytosol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DsRed-labelled clathrin-coated structures mediate endocytosis.
Figure 2: Three ways to image live 3T3 cells.
Figure 3: Internalization of a clathrin-coated pit is accompanied by recruitment of actin.
Figure 4: Actin recruitment and other events during internalization of coated pits.
Figure 5: Recruitment of dynamin.
Figure 6: Dynamin and actin are recruited sequentially.
Figure 7: Fluorescence changes and endocytic structures.

Similar content being viewed by others

References

  1. Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).

    Article  CAS  Google Scholar 

  2. Takei, K. et al. Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell 94, 131–141 (1998).

    Article  CAS  Google Scholar 

  3. Stowell, M. H., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol. 1, 27–32 (1999).

    Article  CAS  Google Scholar 

  4. Sever, S., Damke, H. & Schmid, S. L. Garrotes, springs, ratchets, and whips: putting dynamin models to the test. Traffic 1, 385–392 (2000).

    Article  CAS  Google Scholar 

  5. Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature 410, 231–235 (2001).

    Article  CAS  Google Scholar 

  6. Qualmann, B., Roos, J., DiGregorio, P. J. & Kelly, R. B. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol. Biol. Cell 10, 501–513 (1999).

    Article  CAS  Google Scholar 

  7. Kessels, M. M., Engqvist-Goldstein, A. E., Drubin, D. G. & Qualmann, B. Mammalian Abp1, a signal-responsive F-actin-binding protein, links the actin cytoskeleton to endocytosis via the GTPase dynamin. J. Cell Biol. 153, 351–366 (2001).

    Article  CAS  Google Scholar 

  8. Witke, W. et al. In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J. 17, 967–976 (1998).

    Article  CAS  Google Scholar 

  9. Qualmann, B., Kessels, M. M. & Kelly, R. B. Molecular links between endocytosis and the actin cytoskeleton. J. Cell Biol. 150, F111–F116 (2000).

    Article  CAS  Google Scholar 

  10. Slepnev, V. I. & De Camilli, P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nature Rev. Neurosci. 1, 161–172 (2000).

    Article  CAS  Google Scholar 

  11. Merrifield, C. J. et al. Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nature Cell Biol. 1, 72–74 (1999).

    Article  CAS  Google Scholar 

  12. Frischknecht, F. et al. Tyrosine phosphorylation is required for actin-based motility of vaccinia but not Listeria or Shigella. Curr. Biol. 9, 89–92 (1999).

    Article  CAS  Google Scholar 

  13. Taunton, J. et al. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol. 148, 519–530 (2000).

    Article  CAS  Google Scholar 

  14. Rozelle, A. L. et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP–Arp2/3. Curr. Biol. 10, 311–320 (2000).

    Article  CAS  Google Scholar 

  15. Lee, E. & De Camilli, P. From the Cover: Dynamin at actin tails. Proc. Natl Acad. Sci. USA 99, 161–166 (2002).

    Article  CAS  Google Scholar 

  16. Orth, J. D., Krueger, E. W., Cao, H. & McNiven, M. A. From the Cover: The large GTPase dynamin regulates actin comet formation and movement in living cells. Proc. Natl Acad. Sci. USA 99, 167–172 (2002).

    Article  CAS  Google Scholar 

  17. Gottlieb, T. A., Ivanov, I. E., Adesnik, M. & Sabatini, D. D. Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J. Cell Biol. 120, 695–710 (1993).

    Article  CAS  Google Scholar 

  18. Fujimoto, L. M., Roth, R., Heuser, J. E. & Schmid, S. L. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1, 161–171 (2000).

    Article  CAS  Google Scholar 

  19. Gaidarov, I., Santini, F., Warren, R. A. & Keen, J. H. Spatial control of coated-pit dynamics in living cells. Nature Cell Biol. 1, 1–7 (1999).

    Article  CAS  Google Scholar 

  20. Engqvist-Goldstein, A. E. et al. The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro. J. Cell Biol. 154, 1209–1223 (2001).

    Article  CAS  Google Scholar 

  21. Lang, T. et al. Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron 18, 857–863 (1997).

    Article  CAS  Google Scholar 

  22. Smythe, E., Carter, L. L. & Schmid, S. L. Cytosol- and clathrin-dependent stimulation of endocytosis in vitro by purified adaptors. J. Cell Biol. 119, 1163–1171 (1992).

    Article  CAS  Google Scholar 

  23. Nesterov, A., Carter, R. E., Sorkina, T., Gill, G. N. & Sorkin, A. Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant μ2 subunit and its effects on endocytosis. EMBO J. 18, 2489–2499 (1999).

    Article  CAS  Google Scholar 

  24. Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764–774 (2001).

    Article  CAS  Google Scholar 

  25. Steyer, J. A. & Almers, W. A real-time view of life within 100 nm of the plasma membrane. Nature Rev. Mol. Cell Biol. 2, 268–275 (2001).

    Article  CAS  Google Scholar 

  26. Heuser, J. E. & Anderson, R. G. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J. Cell Biol. 108, 389–400 (1989).

    Article  CAS  Google Scholar 

  27. Ballestrem, C., Wehrle-Haller, B. & Imhof, B. A. Actin dynamics in living mammalian cells. J. Cell Sci. 111, 1649–1658 (1998).

    CAS  Google Scholar 

  28. Choidas, A. et al. The suitability and application of a GFP–actin fusion protein for long-term imaging of the organization and dynamics of the cytoskeleton in mammalian cells. Eur. J. Cell Biol. 77, 81–90 (1998).

    Article  CAS  Google Scholar 

  29. Ochoa, G. C. et al. A functional link between dynamin and the actin cytoskeleton at podosomes. J. Cell Biol. 150, 377–389 (2000).

    Article  CAS  Google Scholar 

  30. Aizawa, H., Sameshima, M. & Yahara, I. A green fluorescent protein–actin fusion protein dominantly inhibits cytokinesis, cell spreading, and locomotion in Dictyostelium. Cell Struct. Funct. 22, 335–345 (1997).

    Article  CAS  Google Scholar 

  31. Damke, H., Binns, D. D., Ueda, H., Schmid, S. L. & Baba, T. Dynamin GTPase domain mutants block endocytic vesicle formation at morphologically distinct stages. Mol. Biol. Cell 12, 2578–2589 (2001).

    Article  CAS  Google Scholar 

  32. Takei, K., McPherson, P. S., Schmid, S. L. & De Camilli, P. Tubular membrane invaginations coated by dynamin rings are induced by GTP-γS in nerve terminals. Nature 374, 186–190 (1995).

    Article  CAS  Google Scholar 

  33. Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature 374, 190–192 (1995).

    Article  CAS  Google Scholar 

  34. Willingham, M. C. & Pastan, I. Formation of receptosomes from plasma membrane coated pits during endocytosis: analysis by serial sections with improved membrane labeling and preservation techniques. Proc. Natl Acad. Sci. USA 80, 5617–5621 (1983).

    Article  CAS  Google Scholar 

  35. Hinshaw, J. E. Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol. 16, 483–519 (2000).

    Article  CAS  Google Scholar 

  36. Sever, S., Muhlberg, A. B. & Schmid, S. L. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481–486 (1999).

    Article  CAS  Google Scholar 

  37. Buss, F., Arden, S. D., Lindsay, M., Luzio, J. P. & Kendrick-Jones, J. Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. EMBO J. 20, 3676–3684 (2001).

    Article  CAS  Google Scholar 

  38. Burack, M. A., Silverman, M. A. & Banker, G. The role of selective transport in neuronal protein sorting. Neuron 26, 465–472 (2000).

    Article  CAS  Google Scholar 

  39. Oshiro, S. et al. Redox, transferrin-independent, and receptor-mediated endocytosis iron uptake systems in cultured human fibroblasts. J. Biol. Chem. 268, 21586–21591 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. de Camilli and S. Schmid for helpful discussions, and D. Zenisek, J. Taraska and T. Blackmer for their helpful comments on the manuscript. This work was supported by National Institutes of Health grants MH60600 and DK44239.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfhard Almers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merrifield, C., Feldman, M., Wan, L. et al. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4, 691–698 (2002). https://doi.org/10.1038/ncb837

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing