Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl

Abstract

The evolutionarily conserved proteins Par-6, atypical protein kinase C (aPKC), Cdc42 and Par-3 associate to regulate cell polarity and asymmetric cell division, but the downstream targets of this complex are largely unknown. Here we identify direct physiological interactions between mammalian aPKC, murine Par-6C (mPar-6C) and Mlgl, the mammalian orthologue of the Drosophila melanogaster tumour suppressor Lethal (2) giant larvae. In cultured cell lines and in mouse brain, aPKC, mPar-6C and Mlgl form a multiprotein complex in which Mlgl is targeted for phosphorylation on conserved serine residues. These phosphorylation sites are important for embryonic fibroblasts to polarize correctly in response to wounding and may regulate the ability of Mlgl to direct protein trafficking. Our data provide a direct physical and regulatory link between proteins of distinct polarity complexes, identify Mlgl as a functional substrate for aPKC in cell polarization and indicate that aPKC is directed to cell polarity substrates through a network of protein–protein interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of Mlgl as a binding partner for mPar-6C.
Figure 2: Mlgl and mPar-6C interact in cells.
Figure 3: mPar-6 and Mlgl have a similar cellular distribution pattern.
Figure 4: Several regions of mPar-6C associate with Mlgl.
Figure 5: mPar-6C CRIB and PDZ domains bind to the N terminus of Mlgl.
Figure 6: Mlgl, aPKC and mPar-6C form an oligomeric complex.
Figure 7: aPKC binds and phosphorylates Mlgl.
Figure 8: Mlgl phosphorylation sites have a role in polarizing migrating cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Yeaman, C., Grindstaff, K.K., Hansen, M.D. & Nelson, W.J. Cell polarity: versatile scaffolds keep things in place. Curr. Biol. 9, R515–R517 (1999).

    Article  CAS  Google Scholar 

  2. Ohno, S. Intercellular junctions and cellular polarity: the PAR–aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr. Opin. Cell Biol. 13, 641–648 (2001).

    Article  CAS  Google Scholar 

  3. Tepass, U., Tanentzapf, G., Ward, R. & Fehon, R. Epithelial cell polarity and cell junctions in Drosophila. Annu. Rev. Genet. 35, 747–784 (2001).

    Article  CAS  Google Scholar 

  4. Guo, S. & Kemphues, K.J. Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. Curr. Opin. Genet. Dev. 6, 408–415 (1996).

    Article  CAS  Google Scholar 

  5. Tabuse, Y. et al. Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125, 3607–3614 (1998).

    CAS  PubMed  Google Scholar 

  6. Hung, T.J. & Kemphues, K.J. PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in Caenorhabditis elegans embryos. Development 126, 127–135 (1999).

    CAS  PubMed  Google Scholar 

  7. Wodarz, A., Ramrath, A., Grimm, A. & Knust, E. Drosophila atypical protein kinase C associates with Bazooka and controls polarity of epithelia and neuroblasts. J. Cell Biol. 150, 1361–1374 (2000).

    Article  CAS  Google Scholar 

  8. Petronczki, M. & Knoblich, J.A. DmPAR-6 directs epithelial polarity and asymmetric cell division of neuroblasts in Drosophila. Nature Cell Biol. 3, 43–49 (2001).

    Article  CAS  Google Scholar 

  9. Gao, L., Joberty, G. & Macara, I.G. Assembly of epithelial tight junctions is negatively regulated by Par6. Curr. Biol. 12, 221–225 (2002).

    Article  CAS  Google Scholar 

  10. Hirose, T. et al. Involvement of ASIP/PAR-3 in the promotion of epithelial tight junction formation. J. Cell Sci. 115, 2485–2495 (2002).

    CAS  PubMed  Google Scholar 

  11. Yamanaka, T. et al. PAR-6 regulates aPKC activity in a novel way and mediates cell–cell contact-induced formation of the epithelial junctional complex. Genes Cells 6, 721–731 (2001).

    Article  CAS  Google Scholar 

  12. Suzuki, A. et al. Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia- specific junctional structures. J. Cell Biol. 152, 1183–1196 (2001).

    Article  CAS  Google Scholar 

  13. Johansson, A., Driessens, M. & Aspenstrom, P. The mammalian homologue of the Caenorhabditis elegans polarity protein PAR-6 is a binding partner for the Rho GTPases Cdc42 and Rac1. J. Cell Sci. 113, 3267–3275 (2000).

    CAS  PubMed  Google Scholar 

  14. Joberty, G., Petersen, C., Gao, L. & Macara, I.G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nature Cell Biol. 2, 531–539 (2000).

    Article  CAS  Google Scholar 

  15. Horne-Badovinac, S. et al. Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. Curr. Biol. 11, 1492–1502 (2001).

    Article  CAS  Google Scholar 

  16. Peterson, R.T., Mably, J.D., Chen, J.N. & Fishman, M.C. Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul. Curr. Biol. 11, 1481–1491 (2001).

    Article  CAS  Google Scholar 

  17. Ponting, C.P. et al. OPR, PC and AID: all in the PB1 family. Trends Biochem. Sci. 27, 10 (2002).

    Article  CAS  Google Scholar 

  18. Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000).

    Article  CAS  Google Scholar 

  19. Qiu, R.G., Abo, A. & Martin, S.G. A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCζ signaling and cell transformation. Curr. Biol. 10, 697–707 (2000).

    Article  CAS  Google Scholar 

  20. Kay, A.J. & Hunter, C.P. CDC-42 regulates PAR protein localization and function to control cellular and embryonic polarity in C. elegans. Curr. Biol. 11, 474–481 (2001).

    Article  CAS  Google Scholar 

  21. Gotta, M., Abraham, M.C. & Ahringer, J. CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr. Biol. 11, 482–488 (2001).

    Article  CAS  Google Scholar 

  22. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  Google Scholar 

  23. Kaibuchi, K. Regulation of cytoskeleton and cell adhesion by Rho targets. Prog. Mol. Subcell. Biol. 22, 23–38 (1999).

    Article  CAS  Google Scholar 

  24. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8–13 (1999).

    Article  CAS  Google Scholar 

  25. Musch, A., Cohen, D., Kreitzer, G. & Rodriguez-Boulan, E. cdc42 regulates the exit of apical and basolateral proteins from the trans-Golgi network. EMBO J. 20, 2171–2179 (2001).

    Article  CAS  Google Scholar 

  26. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCζ. Cell 106, 489–498 (2001).

    Article  CAS  Google Scholar 

  27. Izumi, Y. et al. An atypical PKC directly associates and colocalizes at the epithelial tight junction with ASIP, a mammalian homologue of Caenorhabditis elegans polarity protein PAR-3. J. Cell Biol. 143, 95–106 (1998).

    Article  CAS  Google Scholar 

  28. Coghlan, M.P., Chou, M.M. & Carpenter, C.L. Atypical protein kinases C λ and ζ associate with the GTP-binding protein Cdc42 and mediate stress fiber loss. Mol. Cell. Biol. 20, 2880–2889 (2000).

    Article  CAS  Google Scholar 

  29. Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2000).

    Article  CAS  Google Scholar 

  30. Bilder, D. & Perrimon, N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

    Article  CAS  Google Scholar 

  31. Peng, C.Y., Manning, L., Albertson, R. & Doe, C.Q. The tumour-suppressor genes lgl and dlg regulate basal protein targeting in Drosophila neuroblasts. Nature 408, 596–600 (2000).

    Article  CAS  Google Scholar 

  32. Ohshiro, T., Yagami, T., Zhang, C. & Matsuzaki, F. Role of cortical tumour-suppressor proteins in asymmetric division of Drosophila neuroblast. Nature 408, 593–596 (2000).

    Article  CAS  Google Scholar 

  33. Gateff, E. & Schneiderman, H.A. Neoplasms in mutant and cultured wild-type tissues of Drosophila. Natl Cancer Inst. Monogr. 31, 365–397 (1969).

    CAS  PubMed  Google Scholar 

  34. Mechler, B.M., McGinnis, W. & Gehring, W.J. Molecular cloning of lethal(2)giant larvae, a recessive oncogene of Drosophila melanogaster. EMBO J. 4, 1551–1557 (1985).

    Article  CAS  Google Scholar 

  35. Lehman, K., Rossi, G., Adamo, J.E. & Brennwald, P. Yeast homologues of tomosyn and lethal giant larvae function in exocytosis and are associated with the plasma membrane SNARE, Sec9. J Cell. Biol. 146, 125–140 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Musch, A. et al. Mammalian homolog of Drosophila tumor suppressor lethal (2) giant larvae interacts with basolateral exocytic machinery in Madin–Darby canine kidney cells. Mol. Biol. Cell 13, 158–168 (2002).

    Article  CAS  Google Scholar 

  37. Fujita, Y. et al. Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron 20, 905–915 (1998).

    Article  CAS  Google Scholar 

  38. Kalmes, A., Merdes, G., Neumann, B., Strand, D. & Mechler, B.M. A serine-kinase associated with the p127-L(2)gl tumour suppressor of Drosophila may regulate the binding of p127 to nonmuscle myosin II heavy chain and the attachment of p127 to the plasma membrane. J. Cell Sci. 109, 1359–1368 (1996).

    CAS  PubMed  Google Scholar 

  39. Kulkarni, S.V., Gish, G., van der Geer, P., Henkemeyer, M. & Pawson, T. Role of p120 Ras-GAP in directed cell movement. J. Cell Biol. 149, 457–470 (2000).

    Article  CAS  Google Scholar 

  40. Hurd, T.W., Gao, L., Roh, M.H., Macara, I.G. & Margolis, B. Binding of PALS1/Stardust to Par6 links two polarity complexes implicated in epithelial tight junction assembly. Nature Cell Biol. 5, 137–142 (2003).

    Article  CAS  Google Scholar 

  41. Bilder, D., Schober, M. & Perrimon, N. Integrated activity of PDZ protein complexes regulates epithelial polarity. Nature Cell Biol. 5, 53–58 (2003).

    Article  CAS  Google Scholar 

  42. Tanentzapf, G. & Tepass, U. Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization. Nature Cell Biol. 5, 46–52 (2003).

    Article  CAS  Google Scholar 

  43. Strand, D. et al. A human homologue of the Drosophila tumour suppressor gene l(2)gl maps to 17p11.2–12 and codes for a cytoskeletal protein that associates with nonmuscle myosin II heavy chain. Oncogene 11, 291–301 (1995).

    CAS  PubMed  Google Scholar 

  44. Ebnet, K. et al. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J. 20, 3738–3748 (2001).

    Article  CAS  Google Scholar 

  45. Itoh, M. et al. Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J. Cell Biol. 154, 491–497 (2001).

    Article  CAS  Google Scholar 

  46. Arquier, N., Perrin, L., Manfruelli, P. & Semeriva, M. The Drosophila tumor suppressor gene lethal(2)giant larvae is required for the emission of the Decapentaplegic signal. Development 128, 2209–2220 (2001).

    CAS  PubMed  Google Scholar 

  47. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  Google Scholar 

  48. Couchman, J.R. & Rees, D.A. The behavior of fibroblasts migrating from chick heart explants: changes in adhesion, locomotion, and growth in the distribution of actomyosin and fibronectin. J. Cell Sci. 39, 149–165 (1979).

    CAS  PubMed  Google Scholar 

  49. Cramer, L.P., Siebert, M. & Mitchison, T.J. Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: Implication for the generation of motile force. J. Cell Biol. 136, 1287–1305 (1997).

    Article  CAS  Google Scholar 

  50. Ettenson, D.S. & Gotlieb, A.I. Centrosomes microtubules and microfilaments in the reendothelialization and remodeling of double-sided in vitro wounds. Lab. Invest. 66, 722–733 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Velazquez, S. Gelkop and I. Ernberg for reagents and technical advice; B. Baskin and B. Cox for technical assistance; I. Macara for HA–mPar-6A and mPar-6B cDNAs; and J. Knoblich for sharing data before publication. P.J.P., J.P.F. and A.D.H. are recipients of Canadian Institutes of Health Research (CIHR) postdoctoral fellowships and K.B. is the recipient of an NSERC industrial postgraduate scholarship with MDS-Sciex. This work was supported by grants from the National Cancer Institute of Canada, the CIHR and the Ontario R&D Challenge Fund and Genome Canada. T.P. is a Distinguished Scientist of the CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Pawson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plant, P., Fawcett, J., Lin, D. et al. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nat Cell Biol 5, 301–308 (2003). https://doi.org/10.1038/ncb948

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb948

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing