Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina

Abstract

Absorption of a light particle by an opsin-pigment causes photoisomerization of its retinaldehyde chromophore. Restoration of light sensitivity to the resulting apo-opsin requires chemical re-isomerization of the photobleached chromophore. This is carried out by a multistep enzyme pathway called the visual cycle. Accumulating evidence suggests the existence of an alternative visual cycle for regenerating opsins in daylight. Here we identified dihydroceramide desaturase-1 (DES1) as a retinol isomerase and an excellent candidate for isomerase-2 in this alternative pathway. DES1 is expressed in retinal Müller cells, where it coimmunoprecipitates with cellular retinaldehyde binding protein (CRALBP). Adenoviral gene therapy with DES1 partially rescued the biochemical and physiological phenotypes in Rpe65−/− mice lacking isomerohydrolase (isomerase-1). Knockdown of DES1 expression by RNA interference concordantly reduced isomerase-2 activity in cultured Müller cells. Purified DES1 had very high isomerase-2 activity in the presence of appropriate cofactors, suggesting that DES1 by itself is sufficient for isomerase activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunohistochemical and immunoblotting analysis showing DES1 expression in the retina and RPE.
Figure 2: Isomerase-2 activities of human membrane desaturases.
Figure 3: Levels of visual chromophore and ERG amplitudes in Rpe65−/− mice after intravitreal injection of ad-DES1 or ad-RFP.
Figure 4: Coimmunoprecipitation of CRALBP with DES1 and effects of CRALBP on isomerase-2 activity.
Figure 5: Isomerase-2 activity of purified GST-DES1.
Figure 6: Proposed alternative visual cycle in Müller cells.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Crouch, R., Purvin, V., Nakanishi, K. & Ebrey, T. Isorhodopsin II: artificial photosensitive pigment formed from 9,13-dicis retinal. Proc. Natl. Acad. Sci. USA 72, 1538–1542 (1975).

    Article  CAS  Google Scholar 

  2. Jin, M., Li, S., Moghrabi, W.N., Sun, H. & Travis, G.H. Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium. Cell 122, 449–459 (2005).

    Article  CAS  Google Scholar 

  3. Redmond, T.M. et al. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc. Natl. Acad. Sci. USA 102, 13658–13663 (2005).

    Article  CAS  Google Scholar 

  4. Goldstein, E.B. Cone pigment regeneration in the isolated frog retina. Vision Res. 10, 1065–1068 (1970).

    Article  CAS  Google Scholar 

  5. Hood, D.C. & Hock, P.A. Recovery of cone receptor activity in the frog's isolated retina. Vision Res. 13, 1943–1951 (1973).

    Article  CAS  Google Scholar 

  6. Jones, G.J., Crouch, R.K., Wiggert, B., Cornwall, M.C. & Chader, G.J. Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. Proc. Natl. Acad. Sci. USA 86, 9606–9610 (1989).

    Article  CAS  Google Scholar 

  7. Wang, J.S., Estevez, M.E., Cornwall, M.C. & Kefalov, V.J. Intra-retinal visual cycle required for rapid and complete cone dark adaptation. Nat. Neurosci. 12, 295–302 (2009).

    Article  CAS  Google Scholar 

  8. Wang, J.S. & Kefalov, V.J. An alternative pathway mediates the mouse and human cone visual cycle. Curr. Biol. 19, 1665–1669 (2009).

    Article  CAS  Google Scholar 

  9. Das, S.R., Bhardwaj, N., Kjeldbye, H. & Gouras, P. Muller cells of chicken retina synthesize 11-cis-retinol. Biochem. J. 285, 907–913 (1992).

    Article  CAS  Google Scholar 

  10. Bunt-Milam, A.H. & Saari, J.C. Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J. Cell Biol. 97, 703–712 (1983).

    Article  CAS  Google Scholar 

  11. Eisenfeld, A.J., Bunt-Milam, A.H. & Saari, J.C. Localization of retinoid-binding proteins in developing rat retina. Exp. Eye Res. 41, 299–304 (1985).

    Article  CAS  Google Scholar 

  12. Wu, B.X. et al. Identification of RDH10, an all-trans retinol dehydrogenase, in retinal Muller cells. Invest. Ophthalmol. Vis. Sci. 45, 3857–3862 (2004).

    Article  Google Scholar 

  13. Mata, N.L., Radu, R.A., Clemmons, R. & Travis, G.H. Isomerization and oxidation of vitamin a in cone-dominant retinas. A novel pathway for visual-pigment regeneration in daylight. Neuron 36, 69–80 (2002).

    Article  CAS  Google Scholar 

  14. Mata, N.L., Ruiz, A., Radu, R.A., Bui, T.V. & Travis, G.H. Chicken retinas contain a retinoid isomerase activity that catalyzes the direct conversion of all-trans-retinol to 11-cis-retinol. Biochemistry 44, 11715–11721 (2005).

    Article  CAS  Google Scholar 

  15. Muniz, A. et al. Evidence for two retinoid cycles in the cone-dominated chicken eye. Biochemistry 48, 6854–6863 (2009).

    Article  CAS  Google Scholar 

  16. Moiseyev, G., Chen, Y., Takahashi, Y., Wu, B.X. & Ma, J.X. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc. Natl. Acad. Sci. USA 102, 12413–12418 (2005).

    Article  CAS  Google Scholar 

  17. Cadena, D.L., Kurten, R.C. & Gill, G.N. The product of the MLD gene is a member of the membrane fatty acid desaturase family: overexpression of MLD inhibits EGF receptor biosynthesis. Biochemistry 36, 6960–6967 (1997).

    Article  CAS  Google Scholar 

  18. Savile, C.K., Fabrias, G. & Buist, P.H. Dihydroceramide δ4 ddesaturase initiates substrate oxidation at C-4. J. Am. Chem. Soc. 123, 4382–4385 (2001).

    Article  CAS  Google Scholar 

  19. Shanklin, J., Whittle, E. & Fox, B.G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33, 12787–12794 (1994).

    Article  CAS  Google Scholar 

  20. Michel, C. et al. Characterization of ceramide synthesis. A dihydroceramide desaturase introduces the 4,5-trans-double bond of sphingosine at the level of dihydroceramide. J. Biol. Chem. 272, 22432–22437 (1997).

    Article  CAS  Google Scholar 

  21. Rioux, V., Pedrono, F. & Legrand, P. Regulation of mammalian desaturases by myristic acid: N-terminal myristoylation and other modulations. Biochim. Biophys. Acta 1811, 1–8 (2011).

    Article  CAS  Google Scholar 

  22. Beauchamp, E. et al. N-Myristoylation targets dihydroceramide δ4-desaturase 1 to mitochondria: partial involvement in the apoptotic effect of myristic acid. Biochimie 91, 1411–1419 (2009).

    Article  CAS  Google Scholar 

  23. Causeret, C., Geeraert, L., Van der Hoeven, G., Mannaerts, G.P. & Van Veldhoven, P.P. Further characterization of rat dihydroceramide desaturase: tissue distribution, subcellular localization, and substrate specificity. Lipids 35, 1117–1125 (2000).

    Article  CAS  Google Scholar 

  24. Beauchamp, E. et al. Myristic acid increases the activity of dihydroceramide δ4-desaturase 1 through its N-terminal myristoylation. Biochimie 89, 1553–1561 (2007).

    Article  CAS  Google Scholar 

  25. Triola, G., Fabrias, G., Casas, J. & Llebaria, A. Synthesis of cyclopropene analogues of ceramide and their effect on dihydroceramide desaturase. J. Org. Chem. 68, 9924–9932 (2003).

    Article  CAS  Google Scholar 

  26. Rahmaniyan, M., Curley, R.W. Jr., Obeid, L.M., Hannun, Y.A. & Kraveka, J.M. Identification of dihydroceramide desaturase as a direct in vitro target for fenretinide. J. Biol. Chem. 286, 24754–24764 (2011).

    Article  CAS  Google Scholar 

  27. Rando, R.R. & Chang, A. Studies on the catalyzed interconversion of vitamin A derivatives. J. Am. Chem. Soc. 105, 2879–2882 (1983).

    Article  CAS  Google Scholar 

  28. Rando, R.R. Molecular mechanisms in visual pigment regeneration. Photochem. Photobiol. 56, 1145–1156 (1992).

    Article  CAS  Google Scholar 

  29. Redmond, T.M., Poliakov, E., Kuo, S., Chander, P. & Gentleman, S. RPE65, visual cycle retinol isomerase, is not inherently 11-cis-specific: support for a carbocation mechanism of retinol isomerization. J. Biol. Chem. 285, 1919–1927 (2010).

    Article  CAS  Google Scholar 

  30. Trevino, S.G., Villazana-Espinoza, E.T., Muniz, A. & Tsin, A.T. Retinoid cycles in the cone-dominated chicken retina. J. Exp. Biol. 208, 4151–4157 (2005).

    Article  Google Scholar 

  31. Kefalov, V.J. et al. Breaking the covalent bond—a pigment property that contributes to desensitization in cones. Neuron 46, 879–890 (2005).

    Article  CAS  Google Scholar 

  32. Redmond, T.M. et al. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet. 20, 344–351 (1998).

    Article  CAS  Google Scholar 

  33. Znoiko, S.L. et al. Downregulation of cone-specific gene expression and degeneration of cone photoreceptors in the Rpe65−/− mouse at early ages. Invest. Ophthalmol. Vis. Sci. 46, 1473–1479 (2005).

    Article  Google Scholar 

  34. Di Polo, A., Aigner, L.J., Dunn, R.J., Bray, G.M. & Aguayo, A.J. Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Muller cells temporarily rescues injured retinal ganglion cells. Proc. Natl. Acad. Sci. USA 95, 3978–3983 (1998).

    Article  CAS  Google Scholar 

  35. Saari, J.C. & Bredberg, D.L. Photochemistry and stereoselectivity of cellular retinaldehyde-binding protein from bovine retina. J. Biol. Chem. 262, 7618–7622 (1987).

    CAS  PubMed  Google Scholar 

  36. Golovleva, I. et al. Disease-causing mutations in the cellular retinaldehyde binding protein tighten and abolish ligand interactions. J. Biol. Chem. 278, 12397–12402 (2003).

    Article  CAS  Google Scholar 

  37. Saari, J.C., Nawrot, M., Stenkamp, R.E., Teller, D.C. & Garwin, G.G. Release of 11-cis-retinal from cellular retinaldehyde-binding protein by acidic lipids. Mol. Vis. 15, 844–854 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hubbard, R. The thermal stability of rhodopsin and opsin. J. Gen. Physiol. 42, 259–280 (1958).

    Article  CAS  Google Scholar 

  39. Meyer, D.B. & May, H.C. Jr. The topographical distribution of rods and cones in the adult chicken retina. Exp. Eye Res. 17, 347–355 (1973).

    Article  CAS  Google Scholar 

  40. Carter-Dawson, L.D. & LaVail, M.M. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J. Comp. Neurol. 188, 245–262 (1979).

    Article  CAS  Google Scholar 

  41. Rohrer, B. et al. Correlation of regenerable opsin with rod ERG signal in Rpe65−/− mice during development and aging. Invest. Ophthalmol. Vis. Sci. 44, 310–315 (2003).

    Article  Google Scholar 

  42. Caruso, R.C. et al. Retinal disease in Rpe65-deficient mice: comparison to human Leber congenital amaurosis due to RPE65 mutations. Invest. Ophthalmol. Vis. Sci. 51, 5304–5313 (2010).

    Article  Google Scholar 

  43. Fan, J., Rohrer, B., Moiseyev, G., Ma, J.X. & Crouch, R.K. Isorhodopsin rather than rhodopsin mediates rod function in RPE65 knock-out mice. Proc. Natl. Acad. Sci. USA 100, 13662–13667 (2003).

    Article  CAS  Google Scholar 

  44. Farjo, K.M., Moiseyev, G., Takahashi, Y., Crouch, R.K. & Ma, J.X. The 11-cis-retinol dehydrogenase activity of RDH10 and its interaction with visual cycle proteins. Invest. Ophthalmol. Vis. Sci. 50, 5089–5097 (2009).

    Article  Google Scholar 

  45. Baylor, D.A., Nunn, B.J. & Schnapf, J.L. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J. Physiol. (Lond.) 357, 575–607 (1984).

    Article  CAS  Google Scholar 

  46. Hsu, S.C. & Molday, R.S. Glucose metabolism in photoreceptor outer segments. Its role in phototransduction and in NADPH-requiring reactions. J. Biol. Chem. 269, 17954–17959 (1994).

    CAS  PubMed  Google Scholar 

  47. Radu, R.A. et al. Reductions in serum vitamin a arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases. Invest. Ophthalmol. Vis. Sci. 46, 4393–4401 (2005).

    Article  Google Scholar 

  48. Nusinowitz, S., Ridder, W.H. III & Ramirez, J. Temporal response properties of the primary and secondary rod-signaling pathways in normal and Gnat2 mutant mice. Exp. Eye Res. 84, 1104–1114 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Radu for insightful suggestions throughout this project and valuable comments on the manuscript, J. Hu and D. Bok for assistance with immunocytochemistry, M. Redmond (National Eye Institute) for providing Rpe65−/− mice, and R. Crouch (Medical University of South Carolina) for the gift of 11-cis-RAL. This work was supported by a grant to G.H.T. from the US National Eye Institute (R01-EY11713). G.H.T. is the Charles Kenneth Feldman Professor of Ophthalmology.

Author information

Authors and Affiliations

Authors

Contributions

G.H.T. conceived the project. G.H.T., J.J.K., C.N.R., Q.Y. and S.N. designed the experiments and interpreted the data. J.J.K., Q.Y., J.C., S.S., J.M., A.M., A.K., P.K., S.H., T.X. and C.N.R. performed the experiments. G.H.T. wrote the manuscript.

Corresponding author

Correspondence to Gabriel H Travis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Methods (PDF 1465 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaylor, J., Yuan, Q., Cook, J. et al. Identification of DES1 as a vitamin A isomerase in Müller glial cells of the retina. Nat Chem Biol 9, 30–36 (2013). https://doi.org/10.1038/nchembio.1114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing