Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome

Abstract

Dorsal-ventral limb patterning in vertebrates is thought to be controlled by the LIM-homeodomain protein Lmx1b which is expressed in a spatially and temporally restricted manner along the dorsal-ventral limb axis1,2. Here we describe the phenotype resulting from targeted disruption of Lmx1b. Our results demonstrate that Lmx1b is essential for the specification of dorsal limb fates at both the zeugopodal and autopodal level with prominent phenotypes including an absence of nails and patellae. These features are similar to those present in a dominantly inherited human condition called nail patella syndrome3 (NPS) which also has renal involvement. Mouse Lmx1b maps to a region syntenic to that of the NPS gene4, and kidneys of Lmx1b mutant mice exhibit pathological changes similar to that observed in NPS (refs 5,6). Our results demonstrate an essential function for Lmx1b in mouse limb and kidney development and suggest that NPS might result from mutations in the human LMX1B gene.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Riddle, R.D. et al. Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell 83, 631–640 (1995).

    Article  CAS  Google Scholar 

  2. Vogel, A., Rodriguez, C., Warnken, W. & Izpisua Belmonte, J.C. Dorsal cell fate specified by chick Lmx1 during vertebrate limb development. Nature 378, 716–720 (1995).

    Article  CAS  Google Scholar 

  3. Jones, K.L. Smith's Recognizable Patterns of Human Malformation, (W.B. Saunders Company, Philadelphia, 1997).

  4. McIntosh, I. et al. Fine mapping of the nail-patella syndrome locus at 9q34. Am. J. Hum. Genet. 60, 133–142 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Del Pozo, E. & Lapp, H. Ultrastructure of the kidney in the nephropathy of the nail-patella syndrome. Am. J. Clin. Pathol. 54, 845–851 (1970).

    Article  CAS  Google Scholar 

  6. Morita, T. et al. Nail-Patella syndrome. Light and electron microscopic studies of the kidney. Arch. Intern. Med. 131, 271–277 (1973).

    Article  CAS  Google Scholar 

  7. Sanchez-Garcia, I. & Rabbitts, T.H. The LIM domain: a new structural motif found in zinc-finger-like proteins. Trends Genet. 10, 315–320 (1994).

    Article  CAS  Google Scholar 

  8. Johnson, J.D., Zhang, W.G., Rudnick, A., Rutter, W.J. & German, M.S., Transcriptional Synergy Between Lim-Homeodomain Proteins and Basic Helix-Loop-Helix Proteins - the Lim2 Domain Determines Specificity. Mol. Cell. Biol. 17, 3488–3496 (1997).

    Article  CAS  Google Scholar 

  9. German, M.S., Wang, J., Chadwick, R.B. & Rutter, W.J. Synergistic activation of the insulin gene by a LIM-homeodomain protein and a basic helix-loop-helix protein: building a functional insulin minienhancer complex. Genes Dev. 6, 2165–2176 (1992).

    Article  CAS  Google Scholar 

  10. Pilz, A., Prohaska, R., Peters, J. & Abbott, C. Genetic linkage analysis of the Ak1, Col5a1, Epb7.2, Fpgs, Grp78, Pbx3, and Notchl genes in the region of mouse chromosome 2 homologous to human chromosome 9q. Genomics 21, 104–109 (1994).

    Article  CAS  Google Scholar 

  11. Cygan, J., Johnson, R.L. & McMahon, A.P. Novel regulatory interactions revealed by studies of murine limb pattern in Wnt-7a and En-1 mutants. Development 124, 5021–5032 (1997).

    CAS  PubMed  Google Scholar 

  12. Parr, B.A., Shea, M.J., Vassileva, G. & McMahon, A.P., Mouse Wnt genes exhibit discrete domains of expression in the early embryonic CNS and limb buds. Development 119, 247–261 (1993).

    CAS  Google Scholar 

  13. Joyner, A.L. & Martin, G.R. En-1 and En-2, two mouse genes with sequence homology to the Drosophila engrailed gene: expression during embryo-genesis [published erratum appears in Genes Dev. 1, 521 (1987)]. Genes Dev. 1, 29–38 (1987).

    Article  CAS  Google Scholar 

  14. Parr, B.A. & McMahon, A.P. Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374, 350–353 (1995).

    Article  CAS  Google Scholar 

  15. Loomis, C.A. et al. The mouse Engrailed-1 gene and ventral limb patterning. Nature 382, 360–363 (1996).

    Article  CAS  Google Scholar 

  16. Johnson, R.L. & Tabin, C.J. Molecular models of vertebrate limb development. Cell 90, 979–990 (1997).

    Article  CAS  Google Scholar 

  17. Riddle, R.D., Johnson, R.L., Laufer, E. & Tabin, C. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75, 1401–1416 (1993).

    Article  CAS  Google Scholar 

  18. Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 (1993).

    Article  CAS  Google Scholar 

  19. Davis, A.P. & Capecchi, M.R. Axial homeosis and appendicular skeleton defects in mice with a targeted disruption of hoxd-11. Development 120, 2187–2198 (1994).

    CAS  Google Scholar 

  20. , S., et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nature Genet. 19, 47–50 (1998)

  21. Lechner, M.S. & Dressier, G.R. The molecular basis of embryonic kidney development. Mech. Dev. 62, 105–120 (1997).

    Article  CAS  Google Scholar 

  22. Jurata, L.W. & Gill, G.N. Functional analysis of the nuclear LIM domain interactor NLI. Mol. Cell. Biol. 17, 5688–5698 (1997).

    Article  CAS  Google Scholar 

  23. McMahon, A.P. & Bradley, A., Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62, 1073–1085 (1990).

    Article  CAS  Google Scholar 

  24. Gan, L. et al. POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc. Natl Acad. Sci. USA 93, 3920–3925 (1996).

    Article  CAS  Google Scholar 

  25. Chen, Z.F. & Behringer, R.R. twist is required in head mesenchyme for crainial neural tube morphogenesis. Genes Dev. 15, 686–699 (1995).

    Article  Google Scholar 

  26. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo: a Laboratory Manual, (Cold Spring Harbor Laboratory Press, Cold Spring Harbour, 1994).

    Google Scholar 

  27. Albrecht, U. et al. Platelet-activating factor acetylhydrolase expression-and activity suggest a link between neuronal migration and platelet-activating factor. Dev. Biol. 180, 579–593 (1996).

    Article  CAS  Google Scholar 

  28. Pepicelli, C.V., Kispert, A., Rowitch, D.H. & McMahon, A.P. GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev. Biol. 192, 193–198 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy L. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Lun, Y., Ovchinnikov, D. et al. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat Genet 19, 51–55 (1998). https://doi.org/10.1038/ng0598-51

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0598-51

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing