Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Length of uninterrupted CGG repeats determines instability in the FMR1 gene

Abstract

Analysis of 84 human X chromosomes for the presence of interrupting AGG trinucleotides within the CGG repeat tract of the FMR1 gene revealed that most alleles possess two interspersed AGGs and that the longest tract of uninterrupted CGG repeats is usually found at the 3′ end. Variation in the length of the repeat appears polar. Alleles containing between 34 and 55 repeats, with documented unstable transmissions, were shown to have lost one or both AGG interruptions. These comparisons define an instability threshold of 34–38 uninterrupted CGG repeats. Analysis of premutation alleles in Fragile X syndrome carriers reveals that 70% of these alleles contain a single AGG interruption. These data suggest that the loss of an AGG is an important mutational event in the generation of unstable alleles predisposed to the Fragile X syndrome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Warren, S.T. & Nelson, D.L. Advances in molecular analysis of fragile X syndrome. JAMA 271, 536–542 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Oberlé, I. et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252, 1097–1102 (1991).

    Article  PubMed  Google Scholar 

  3. Verkerk, A.J.M.H. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Yu, S. et al. Fragile X genotype characterized by an unstable region of DNA. Science 252, 1179–1181 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Kremer, E.J. et al. Isolation of a human DNA sequence which spans the fragile X. Am. J. hum. Genet. 49, 656–661 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fu, Y.H. et al. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Pieretti, M. et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66, 817–822 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Ashley, C.T. et al. Human and murine FMR-1: evidence for alternative splicing and translational initiation downstream of the CGG-repeat. Nature Genet. 4, 244–251 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Sherman, S.L. et al. Further segregation analysis of the fragile X syndrome with special reference to transmitting males. Hum. Genet. 69, 289–299 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Yu, S. et al. Fragile X syndrome: unique genetics of the heritable unstable element. Am. J. hum. Genet. 50, 968–980 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Heitz, D., Devys, D., Imbert, G., Kretz, C. & Mandel, J.L. Inheritance of the fragile X syndrome: size of the fragile X premutation is a major determinant of the transition to full mutation. J. med. Genet. 29, 794–801 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Snow, K. et al. Analysis of a CGG sequence at the FMR-1 locus in the fragile X families and in the general population. Am. J. hum. Genet. 53, 1217–1228 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Reiss, A.L. et al. Frequency and stability of the fragile X premutation. Hum. molec. Genet. 3, 393–398 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Macpherson, N.N., Bullman, H., Youings, S.A. & Jacobs, P.A. Insert size and flanking haplotype In fragile X and normal populations: possible multiple origins for the fragile X mutation. Hum. molec. Genet. 3, 399–405 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Richards, R.I. et al. Evidence of founder chromosomes in fragile X syndrome. Nature Genet. 1, 257–260 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Hirst, M.C. et al. Origins of the fragile X syndrome mutation. J. med. Genet. 30, 647–650 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buyle, S. et al. Founder effect in a Belgian-Dutch fragile X population. Hum. Genet. 92, 269–272 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Oudet, C. et al. Linkage disequilibrium between the fragile X mutation and two closely linked CA repeats suggests that Fragile-X chromosomes are derived from a small number of founder chromosomes. Am. J. hum. Genet. 52, 297–304 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Richards, R.I. et al. Fragile X syndrome: genetic localisation by linkage mapping of two microsatellite repeats FRAXAC1 and FRAXAC2 which immediately flank the fragile site. J. med. Genet. 28, 818–23 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chung, M.-Y. et al. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nature Genet. 5, 254–258 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Chong, S.S., Eichler, E.E., Hughes, M.R. & Nelson, D.L. Robust amplification of the fragile X syndrome CGG repeat using Pfu polymerase: ethidium bromide detection of normal and premutation alleles. Am. J. med. Genet. 51, 522–526 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Pergolizzi, R.G., Erster, S.H., Goonewarda, P. & Brown, W.T. Detection of full fragile X mutation. Lancet 339, 271–272 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Nelson, D.L. et al. Characterization of the FRAX(A) locus in man. Am. J. hum. Genet. 51, A186 (1992).

    Google Scholar 

  24. Nelson, D.L. & Warren, S.T. Trinucleotide repeat instability: when and where? Nature Genet. 4, 107–108 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Jeffreys, A.J. et al. Complex gene conversion events in germline mutation at human minisatellites. Nature Genet. 6, 136–145 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Armour, J.A.L., Harris, P.C. & Jeffreys, A.J. Allelic diversity at minisatellite MS205 (D16S309): evidence for polarized variability. Hum. molec. Genet. 2, 1137–1145 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Richards, R.I. & Sutherland, G.R. Simple repeat DNA is not replicated simply. Nature Genet 6, 114–116 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Trinh, T.Q. & Sinden, R.R. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E coli. Nature 352, 544–548 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Levinson, G. & Gutman, G.A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. A Rev. Blochem. 203–221 (1986).

  30. Gostout, B., Liu, Q. & Sommer, S.S. Cryptic repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. Am. J. hum. Genet. 52, 1182–1190 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Thömmes, P. & Hübscher, U. Eukaryotic DNA replication. European J. Biochem. 194, 699–712 (1990).

    Article  Google Scholar 

  32. Wells, R.D. & Sinden, R.R. in Genome Analysis: Genome Rearrangement and stability (eds Davies, K.E. & Warren, S.T.) 107–138 (Cold Spring Harbor Laboratory Press, New York, 1993).

    Google Scholar 

  33. Wooster, R. et al. Instability of short tandem repeats (microsatellites) in human cancers. Nature Genet. 6, 152–156 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Strand, M., Prolla, T.A., Liskay, R.M. & Petes, T.D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365, 274–276 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Thibodeau, S.N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 260, 816–819 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Parsons, R. et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75, 1227–1236 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Alexiou, M. & Leese, H.J. Purine utilisation, denovo synthesis and degradation in mouse preimplantation embryos. Development 114, 185–192 (1992).

    CAS  PubMed  Google Scholar 

  38. Gibbs, M., Collick, A., Kelly, R.G. & Jeffreys, A.J. A tetranucleotide repeat mouse minisatellite displaying substantial somatic instability during early preimplantation development. Genomics 17, 121–128 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Nethanel, T., Zlotkin, T. & Kaufmann, G. Assembly of simian virus 40 Okazaki pieces from DNA primers is reversibly arrested by ATP depletion. J. Virol. 66, 6634–6640 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Reyniers, E. et al. The full mutation in the FMR-1 gene of male fragile X patients is absent in their sperm. Nature Genet. 4, 143–146 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Brown, W.T. et al. Rapid fragile X carrier screening and prenatal diagnosis using a nonradioactive PCR test. JAMA 270, 1569–1575 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichler, E., Holden, J., Popovich, B. et al. Length of uninterrupted CGG repeats determines instability in the FMR1 gene. Nat Genet 8, 88–94 (1994). https://doi.org/10.1038/ng0994-88

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0994-88

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing