Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Novel mutations in families with unusual and variable disorders of the skeletal muscle sodium channel

Abstract

Mutations in the skeletal muscle sodium channel gene (SCN4A) have been described in paramyotonia congenita (PMC) and hyperkalaemic periodic paralysis (HPP). We have found two mutations in SCN4A which affect regions of the sodium channel not previously associated with a disease phenotype. Furthermore, affected family members display an unusual mixture of clinical features reminiscent of PMC, HPP and of a third disorder, myotonia congenita (MC). The highly variable individual expression of these symptoms, including in some cases apparent non–penetrance, implies the existence of modifying factors. Mutations in SCN4A can produce a broad range of phenotypes in muscle diseases characterized by episodic abnormalities of membrane excitability.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fontaine, B. et al. Hyperkalemic periodic paralysis and the adult muscle sodium channel alpha-subunit gene. Science 250, 1000–1002 (1990).

    Article  CAS  Google Scholar 

  2. Koch, M. et al. Confirmation of linkage of hyperkaelemic periodic paralysis to chromosome 17. J. med. Genet. 28, 583–586 (1991).

    Article  CAS  Google Scholar 

  3. Koch, M. et al. Linkage data suggesting allelic heterogeneity for paramyotonia congenita and hyperkalemic periodic paralysis on chromosome 17. Hum. Genet. 88, 71–74 (1991).

    Article  CAS  Google Scholar 

  4. Ptacek, L.J., Tyler, F., Trimmer, J.S., Agnew, W.S. & Leppert, M. Analysis in a large hyperkalemic periodic paralysis pedigree supports tight linkage to a sodium channel locus. Am. J. hum. Genet. 49, 378–382 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ptacek, L.J. et al. Paramyotonia congenita and hyperkalemic periodic paralysis map to the same sodium-channel gene locus. Am. J. hum. Genet. 49, 851–854 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ebers, G.C. et al. Paramyotonia congenita and hyperkalemic periodic paralysis are linked to the adult muscle sodium channel gene. Ann. Neurol. 30, 810–816 (1991).

    Article  CAS  Google Scholar 

  7. McClatchey, A.I. et al. Dinucleotide repeat polymorphisms at the SCN4A locus suggest allelic heterogeneity of hyperkalemic periodic paralysis and paramyotonia congenita. Am. J. hum. Genet. 50, 896–901 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ptacek, L.J., Tawil, R., Griggs, R.C., Storvick, D. & Leppert, M.F. Linkage of atypical myotonia congenita to a sodium channel locus. Neurol. 42, 431–433 (1992).

    Article  CAS  Google Scholar 

  9. McClatchey, A.I. et al. Temperature-sensitive mutations in the III-IV cytoplasmic loop region of the skeletal muscle sodium channel gene in paramyotonia congenita. Cell, 68, 769–774 (1992).

    Article  CAS  Google Scholar 

  10. Ptacek, L.J. et al. Mutations in an S4 segment of the adult skeletal muscle sodium channel cause paramyotonia congenita. Neuron 8, 891–897 (1992).

    Article  CAS  Google Scholar 

  11. Rojas, C.V. et al. A met-to-val mutation in a skeletal muscle Na channel alpha-subunit in hyperkalemic periodic paralysis. Nature 354, 387–389 (1991).

    Article  CAS  Google Scholar 

  12. Ptacek, L.J. et al. Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell 67, 1021–1027 (1991).

    Article  CAS  Google Scholar 

  13. De Silva, S.M., Kuncl, R.W., Griffin, J.W., Cornblath, D.R. & Chavoustie, S. Paramyotonia congenita or hyperkalemic periodic paralysis? Clinical and electrophysiological features of each entity in one family. Muscle Nerve 13, 21–26 (1990).

    Article  CAS  Google Scholar 

  14. Haimovich, B., Schotland, D.L., Fieles, W.E. & Barchi, R.L. Localization of sodium channel subtypes in adult rat skeletal muscle using channel-specific monoclonal antibodies. J. Neurosci. 7, 2957–2966 (1987).

    Article  CAS  Google Scholar 

  15. Schotland, D.L., Fieles, W.E. & Barchi, R.L. Expression of sodium channel subtypes during development in rat skeletal muscle. Muscle Nerve 14, 142–151 (1991).

    Article  CAS  Google Scholar 

  16. Gillard, E.F. et al. A substitution of cysteine for arginine 614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. Genomics 11, 751–755 (1991).

    Article  CAS  Google Scholar 

  17. Levitt, R.C. et al. Evidence for genetic heterogeneity of malignant hyperthermia susceptibility. Genomics 11, 543–547 (1991).

    Article  CAS  Google Scholar 

  18. Deufel, T. et al. Evidence for genetic heterogeneity of malignant hyperthermia susceptibility. Am J. hum. Genet. 50, 1151–1161 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Seizinger, B.R., Martuza, R.L. & Gusella, J.F. Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature 322, 664–667 (1986).

    Article  Google Scholar 

  20. George, A.L., Komisarof, J., Kallen, R.G. & Barchi, R.L. Primary structure of the adult human skeletal muscle voltage-dependent sodium channel. Ann. Neurol. 31, 131–137 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClatchey, A., McKenna-Yasek, D., Cros, D. et al. Novel mutations in families with unusual and variable disorders of the skeletal muscle sodium channel. Nat Genet 2, 148–152 (1992). https://doi.org/10.1038/ng1092-148

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1092-148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing