Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Increased stress response and β–phenylethylamine in MAOB–deficient mice

Abstract

MAOA and MAOB are key iso-enzymes that degrade biogenic and dietary amines1–5. MAOA preferentially oxidizes serotonin (5-hydroxytryptamine, or 5-HT) and nore-pinephrine (NE), whereas MAOB preferentially oxidizes β-phenylethylamine (PEA). Both forms can oxidize dopamine (DA). A mutation in MAOA results in a clinical phenotype characterized by borderline mental retardation and impaired impulse control6,7. X-chromosomal deletions which include MAOB were found in patients suffering from atypical Norrie's disease8,9, which is characterized by blindness and impaired hearing. Reduced MAOB activity has been found in type-ll alcoholism and in cigarette smokers10,11. Because most alcoholics smoke, the effects of alcohol on MAOB activity remain to be determined. Here we show that targetted inactivation of MAOB in mice increases levels of PEA but not those of 5-HT, NE and DA, demonstrating a primary role for MAOB in the metabolism of PEA. PEA has been implicated in modulating mood and affect12,13. Indeed, MAOB-deficient mice showed an increased reactivity to stress. In addition, mutant mice were resistant to the neurodegenerative effects of MPTP, a toxin that induces a condition reminiscent of Parkinson's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bach, A.W. et al. cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc. Natl. Acad. Sci. USA 85, 4934–4938 (1988).

    Article  CAS  Google Scholar 

  2. Lan, N.C. et al. Human monoamine oxidase A and B genes map to Xp11.23 and are deleted in a patient with Norrie disease. Genomics 4, 552–559 (1989).

    Article  CAS  Google Scholar 

  3. Grimsby, J., Chen, K., Wang, L.J., Lan, N.C. & Shih, J.C. Monoamine oxidase A and B genes exhibit identical exon-intron organization. Proc. Natl. Acad. Sci. USA 88, 3637–3641 (1991).

    Article  CAS  Google Scholar 

  4. Chen, K., Wu, H.F., Grimsby, J. & Shih, J.C. Cloning of a novel monoanine oxidase cDNAfrom trout liver. Mol. Pharmacol. 46, 1226–1233 (1994).

    CAS  PubMed  Google Scholar 

  5. Chen, K., Wu, H.F. & Shih, J.C. Influence of C terminus on monoamine oxidase A and B catalytic activity. J. Neurochem. 66, 797–803 (1996).

    Article  CAS  Google Scholar 

  6. Brunner, H.G., Nelen, M.R., Breakfield, X.O., Ropers, H.H. & Oost, B.A. Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262, 578–580 (1993).

    Article  CAS  Google Scholar 

  7. Brunner, H.G. et al. X-Linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am. J. Hum. Genet. 52, 1032–1039 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lenders, J.W.M. et al. Specific genetic deficiencies of the A and B isoenzymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes. J. Clin. Invest. 97, 1010–1019 (1996).

    Article  CAS  Google Scholar 

  9. Collins, F.A. et al. Clinical, biochemical, and neuropsychiatric evaluation of a patient with a contiguous gene syndrome due to a microdeletion Xp11.3 including the Norrie disease locus and monoamine oxidase (MAOA and MAOB) genes. Am. J. Med. Genet. 42, 127–134 (1992).

    Article  CAS  Google Scholar 

  10. Devor, E.J., Cloninger, C.R., Hoffman, P.L. & Tabakoff, B. Association of monoamine oxidase (MAO) activity with alcoholism and alcoholic sybtypes. Am. J. Med. Genet. 48, 209–213 (1993).

    Article  CAS  Google Scholar 

  11. Fowler, J.S. et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature 379, 733–736 (1996).

    Article  CAS  Google Scholar 

  12. Linnoila, M., Karoum, F., Cutler, N.R. & Potter, W.Z. Temporal association between depression dependent dyskinesias and high urinary pheynethylamine output. Biol. Psychiatry 18, 513–518 (1983).

    CAS  PubMed  Google Scholar 

  13. Potkin, S.G., Wyatt, R.J. & Karoum, F. Psychostimulants and dopaminergic agonists in the study of adult hyperkinesis, schizophrenia and affective disorders. Psychopharmacol. Bull. 16, 52–59 (1980).

    CAS  PubMed  Google Scholar 

  14. Saura, J., Richards, J.G. & Mahy, N. Differential age-related changes of MAO-A and MAO-B in mouse brain and peripheral organs. Neurobiol. Aging 15, 399–408 (1994).

    Article  CAS  Google Scholar 

  15. Cases, O. et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268, 1763–1766 (1995).

    Article  CAS  Google Scholar 

  16. Adams, J., Kalivas, P.W. & Miller, C.A. The acute histopathy of MPTP in the mouse CNS. Brain Res. Bull. 23, 1–17 (1989).

    Article  CAS  Google Scholar 

  17. Gerlach, M., Youdim, M.B. & Riederer, P. Pharmacology of selegiline. Neurology 47, 5137–5145 (1996).

    Article  Google Scholar 

  18. Juorio, A.V., Greenshaw, A.J. & Wishart, T.B. Reciprocal changes in striatal dopamine and β-phenylethylamine induced by reserpine in the presence of monoamine oxidase inhibitors. Naunyn Schmiedebergs Arch. Pharmacol. 338, 644–648 (1988).

    Article  CAS  Google Scholar 

  19. Berry, M.D., Scarr, E., Zhu, M.Y., Paterson, I.A. & Juorio, A.V. The effects of administration of monamine oxidase-B inhibitors on rat striatal neurone responses to dopamine. Br. J. Pharmacol. 113, 1159–1166 (1994).

    Article  CAS  Google Scholar 

  20. Paterson, I.A., Juorio, A.V. & Boulton, A.A. 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system. J. Neurochem. 55, 1827–1837 (1990).

    Article  CAS  Google Scholar 

  21. Sabelli, H.C. et al. Clinical studies on the phenylethylamine hypothesis of affective disorder: urine and blood phenylacetic acid and phenylethylamine dietary supplements. J. Clin. Psychiatry 47, 66–70 (1986).

    CAS  PubMed  Google Scholar 

  22. Sano, M. et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. N. Engl. J. Med. 336, 1216–1222 (1997).

    Article  CAS  Google Scholar 

  23. Porsolt, R.D., Bertin, A. & Jalfre, M. Behavioral despair in mice: a primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 229, 327–336 (1977).

    CAS  PubMed  Google Scholar 

  24. Fozard, J.R., Palfreyman, M.G. & Zreika, M. The comparative pharmacology of two selective inhibitors of monoamine oxidase B: deprenyl and MDL 72145 Br. J. Pharmacol. 82, 309P (1984).

    Article  Google Scholar 

  25. Cases, O. et al. Lack of barrels in the somatosensory cortex of monoamine oxidase-A–deficient mice: role of a serotonin excess during the critical period. Neuron 16, 297–307 (1996).

    Article  CAS  Google Scholar 

  26. McFarland, D.J. Effects of scopolamine, D-amphetamine, and apomorphine on alternation and position biases. Pharmacol. Biochem. Behav. 32, 723–726 (1989).

    Article  CAS  Google Scholar 

  27. Wu, H.F., Chen, K. & Shih, J.C. Site-directed mutagenesis of monoamine oxidase A and B: role of cysteines. Mol. Pharmacol. 43, 888–893 (1993).

    CAS  PubMed  Google Scholar 

  28. Kumazawa, T., Suzuki, O., Seno, H. & Hattori, H. Determination of β-phenylethylamine in catfish (Parasilusus asotus) tissues by gas chromatography/mass spectrometry. Comp. Biochem. Physiol. C91, 571–574 (1988).

    Google Scholar 

  29. Dluzen, D., Reddy, A. & McDermott, J. The aromatic amino acid decarboxylase inhibitor, NSD-1015, increases release of dopamine: response characteristics. Neuropharmacology 31, 1223–1229 (1992).

    Article  CAS  Google Scholar 

  30. Pellow, S., Chopin, P., File, S.E. & Briley, M.J. Validation of open:closed arm entries in an elevated plus maze as a measure of anxiety in the rat. J. Neurosci. Methods 14, 149–167 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean C. Shih.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimsby, J., Toth, M., Chen, K. et al. Increased stress response and β–phenylethylamine in MAOB–deficient mice. Nat Genet 17, 206–210 (1997). https://doi.org/10.1038/ng1097-206

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1097-206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing