Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cre–mediated chromosome loss in mice

Abstract

Chromosome loss in early human embryos is thought to cause a large proportion of spontaneous abortions1; when it occurs in specific cell lineages in older embryos or adults, it can result in neoplasia2. Although early embryonic chromosome loss can be modelled by breeding mice carrying robertsonian translocation chromosomes3, there is currently no method for producing mice with tissue-specific monosomies. Here we demonstrate that DNA recombination mediated by the site-specific recombinase Cre4 causes loss of a chromosome carrying loxP sites (Cre recognition sites) in an inverted orientation. Thus, when male mice carrying a Y-linked transgene containing inverted loxP sites are mated with females carrying a cre gene that is ubiquitously expressed in the early embryo, almost all their XY progeny lose the Y chromosome early in embryogenesis and develop as XO females. Because inverted loxP sites can be targetted to any mouse chromosome and mice can be produced that express cre in specific cell lineages, these data suggest a method for engineering tissue-specific loss of particular chromosomes to provide mouse models for human diseases caused by or associated with specific monosomies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Epstein, C.J., Consequences of Chromosome Imbalance (Cambridge University Press, Cambridge, UK, (1986).

    Book  Google Scholar 

  2. Heim, S. & Mitelman, F., Cancer Cytogenetics (Wiley-Liss, New York, 1995).

    Google Scholar 

  3. Epstein, C.J. Mouse monosomies and trisomies as experimental systems for studying mammalian aneuploidy. Trends Genet. 1, 129–134 (1985).

    Article  Google Scholar 

  4. Kilby, N.J., Snaith, M.R. & Murray, J.A. Site-specific recombinases: tools for genome engineering. Trends Genet. 9, 413–421 (1993).

    Article  CAS  Google Scholar 

  5. Golic, K.G. Local transposition of P elements in Drosophila melanogaster and recombination between duplicated elements using a site-specific recombinase. Genetics 137, 551–563 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Falco, S.C., Li, Y., Broach, J.R. & Botstein, D. Genetic properties of chromosomally integrated 2 μ plasmid DNA in yeast. Cell 29, 573–584 (1982).

    Article  CAS  Google Scholar 

  7. Lewandoski, M., Meyers, E.N. & Martin, G.R. Analysis of Fgf8 gene function in vertebrate development. Cold Spring Harbor Symp. Quant. Biol. (in the press).

  8. Cattanach, B.M. XO mice. Genet Res. 3, 487–490 (1962).

    Article  Google Scholar 

  9. Nagamine, C.M., Chan, K., Kozak, C.A. & Lau, Y.-F. Chromosome mapping and expression of a putative testis-determining gene in mouse. Science 243, 80–83 (1989).

    Article  CAS  Google Scholar 

  10. Nagamine, C.M., Michot, J.-L., Roberts, C., Guénet, J.-L. & Bishop, C.E. Linkage of the murine steroid sulfatase locus, Sts, to sex reversed, Sxr. a genetic and molecular analysis. Nucleic Acids Res. 15, 9227–9238 (1987).

    Article  CAS  Google Scholar 

  11. Andreason, G.L. & Evans, G.A. Introduction and expression of DNA molecules in eukaryotic cells by electroporation. Biotechniques 6, 650–660 (1988).

    CAS  PubMed  Google Scholar 

  12. Luna-Fineman, S., Shannon, K.M. & Lange, B.J. Childhood monosomy 7: epidemiology, biology, and mechanistic implications. Blood 85, 1985–1999 (1995).

    CAS  PubMed  Google Scholar 

  13. Tsien, J.Z. et al. Subregion- and cell type–restricted gene knockout in mouse brain. Cell 87, 1317–1326 (1996).

    Article  CAS  Google Scholar 

  14. Gu, H., Marth, J.D., Orban, P.C., Mossmann, H. & Rajewsky, K. Deletion of a DNA polymerase β gene segment in T cells using cell type–specific gene targeting. Science 265, 103–106 (1994).

    Article  CAS  Google Scholar 

  15. Ramirez-Solis, R., Liu, P. & Bradley, A. Chromosome engineering in mice. Nature 378, 720–724 (1995).

    Article  CAS  Google Scholar 

  16. Bouffler, S.D., Morgan, W.F., Pandita, T.K. & Slijepcevic, P. The involvement of telomeric sequences in chromosomal aberrations. Mutat. Res. 366, 129–135 (1996).

    Article  CAS  Google Scholar 

  17. Sandell, L.L. & Zakian, V.A. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75, 729–739 (1993).

    Article  CAS  Google Scholar 

  18. Lewandoski, M., Wassarman, K.M. & Martin, G.R. Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. Curr. Biol. 7, 148–151 (1997).

    Article  CAS  Google Scholar 

  19. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo, 2nd ed. 226–250 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, (1994).

    Google Scholar 

  20. Nagy, A. & Rossant, J. in Gene Targeting: A Practical Approach (ed. Joyner, A.L.) 147–179 (IRL Press, Oxford, UK, (1993).

    Google Scholar 

  21. Tybulewicz, V.L., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 (1991).

    Article  CAS  Google Scholar 

  22. Laird, P.W. et al. Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 19, 4293 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gail R. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewandoski, M., Martin, G. Cre–mediated chromosome loss in mice. Nat Genet 17, 223–225 (1997). https://doi.org/10.1038/ng1097-223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1097-223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing