Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene

Abstract

Hereditary progressive dystonia with marked diurnal fluctuation (HPD) (also known as dopa responsive dystonia) is a dystonia with onset in childhood that shows a marked response without any side effects to levodopa. Recently the gene for dopa responsive dystonia (DRD) was mapped to chromosome 14q. Here we report that GTP cyclohydrolase I is mapped to 14q22.1–q22.2. The identification of four independent mutations of the gene for GTP cyclohydrolase I in patients with HPD, as well as a marked decrease in the enzymes activity in mononuclear blood cells, confirms that the GTP cyclohydrolase I gene is a causative gene for HPD/DRD. This is the first report of a causative gene for the inherited dystonias.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Segawa, M., Ohmi, K., Itoh, S., Aoyama, M. & Hayakawa, H. Childhood basal ganglia disease with remarkable response to L-Dopa, hereditary basal ganglia disease with marked diurnal fluctuation. Shinryo (Tokyo) 24, 667–672 (1971).

    Google Scholar 

  2. Segawa, M., Hosaka, A., Miyagawa, F., Nomura, Y., Imai, H. Hereditary progressive dystonia with marked diurnal fluctuation. Advances in Neurology vol 14 (eds Eldridge, R. & Fahn, S.) 215–233 (Raven Press, New York, 1976).

    Google Scholar 

  3. Nygaard, T.G., Marsden, C.D., Duvoisin, R.C. Dopa-responsive dystonia. Advances in Neurology vol 50 (eds Fahn, S., Marsden, C.D. & Calne, 0. B.) 377–384 (Raven Press, New York, 1988).

    Google Scholar 

  4. Nygaard, T.G., Snow, B.J., Fahn, S. & Calne, D.B. Dopa-responsive dystonia: Clinical characteristics and definition. Hereditary Progressive Dystonia with Marked Diurnal Fluctuation (ed. Segawa, M.) 21–35 (Parthenon, Camforth, UK, 1993).

    Google Scholar 

  5. Nomura, Y. & Segawa, M. Intrafamilial and interfamilial variations of symptoms of Japanese hereditary progressive dystonia with marked diurnal fluctuation. Hereditary Progressive Dystonia with Marked Diurnal Fluctuation (eds Segawa, M.) 73–96 (Parthenon, Camforth, UK, 1993).

    Google Scholar 

  6. Segawa, M., Nomura, Y. & Kase, M. Diurnally fluctuating hereditary progressive dystonia. Handbook of Clinical Neurology (eds Vinken, P.J., Bruyn, G.W. & Klawans, H.L.) 529–539 (Elsevier Science Publishers, New York, 1986).

    Google Scholar 

  7. Rajput, A.H. et al. Dopa-responsive dystonia: Pathological and biochemical observations in a case. Ann. Neurol. 35, 396–402 (1994).

    Article  CAS  Google Scholar 

  8. Fletcher, N.A. et al. Tyrosine hydroxylase and levodopa responsive dystonia. J. Neurol. Neurosurg. Psychiatry 52, 112–114 (1989).

    Article  CAS  Google Scholar 

  9. Tsuji, S. et al. Linkage analysis of hereditary progressive dystonia to the tyrosine hydroxylase gene locus. Hereditary Progressive Dystonia with Marked Diurnal Fluctuation (ed. Segawa, M.) 107–114 (Parthenon Publishing, New York, 1993).

    Google Scholar 

  10. Nygaard, T.G. et al. Linkage mapping of dopa-responsive dystonia (DRD) to chromosome 14q. Nature Genet. 5, 386–391 (1993).

    Article  CAS  Google Scholar 

  11. Endo, K. et al. The gene for hereditary progressive dystonia with marked diurnal fluctuation (HPD) maps to chromosome 14q. Age-related monoamine-dependent disorders and their modulation by gene and gender (eds Segawa, M. & Nomura, Y.) (Karger, Basel, 1995, in the press).

    Google Scholar 

  12. Kaufman, S. Studies on the mechanism of the enzymatic conversion of phenylalanine to tyrosine. J. biol. Chem. 234, 2677–2682 (1959).

    CAS  PubMed  Google Scholar 

  13. Nagatsu, T., Levitt, M. & Udenfriend, S. Tyrosine hydroxylase: the initial step in norepinephrine biosynthesis. J. biol. Chem. 239, 2910–2917 (1964).

    CAS  PubMed  Google Scholar 

  14. Lovenberg, W., Jaquier, E. & Sjoerdsma, A. Tryptophan hydroxylation: measurement in pineal gland, brainstem, and carcinoid tumor. Science 155, 217–219 (1967).

    Article  CAS  Google Scholar 

  15. Nichol, C.A., Smith, G.K. & Duch, D.S. Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin. Ann. rev. Biochem. 54, 729–764 (1985).

    Article  CAS  Google Scholar 

  16. Togari, A., Ichinose, H., Matsumoto, S., Fujita, K. & Nagatsu, T. Multiple mRNA forms of human GTP cyclohydrolase I. Biochem. Biophys. res. Commun. 187, 359–365 (1992).

    Article  CAS  Google Scholar 

  17. Nomura, T. et al. Cloning and sequencing of cDNA encoding mouse GTP cyclohydolase I. Biochem. Biophys. res. Commun. 191, 523–527 (1993).

    Article  CAS  Google Scholar 

  18. Ichinose, H. et al. Cloning and sequencing of cDNA encoding human sepiapterin reductase — An enzyme involved in tetrahydrobiopterin biosynthesis: Biochem Biophys. res. Commun. 179, 183–189 (1991).

    Article  CAS  Google Scholar 

  19. Levine, R.A., Miller, L.P. & Lovenberg, W. Tetrahydrobiopterin in striatum: localization in dopamine nerve terminals and role in catecholamine synthesis. Science 214, 919–921 (1981).

    Article  CAS  Google Scholar 

  20. Kettler, R., Bartholini, G. & Pletscher, A. In vivo enhancement of tyrosine hydroxylation in rat striatum by tetrahydrobiopterin. Nature 249, 476–478 (1974).

    Article  CAS  Google Scholar 

  21. Nagatsu, T. Biopterin cofactor and monoamine-synthesizing monooxygenases. Selected Topics in Neurochemistry (ed. Osborne, N.N.) 325–340 (Pergamon Press, Oxford, 1985).

    Chapter  Google Scholar 

  22. Miwa, S., Watanabe, Y. & Hayaishi, O. 6R-L-erytnro-5,6,7,8-tetrahydrobiopterin as a regulator of dopamine and serotonin biosynthesis in the rat brain. Arch. Biochem. Biophys. 239, 234–241 (1985).

    Article  CAS  Google Scholar 

  23. Williams, A., Eldridge, R., Levine, R., Lovenberg, W. & Paulson, G. Low CSF hydroxylase cofactor (tetrahydrobiopterin) levels in inherited dystonia. Lancet 2, 410–411 (1979).

    Article  CAS  Google Scholar 

  24. LeWitt, P.A. et al. Tetrahydrobiopterin in dystonia: identification of abnormal metabolism and therapeutic trials. Neurology 36, 760–764 (1986).

    Article  CAS  Google Scholar 

  25. Fink, J.K. et al. Dystonia with marked diurnal variation associated with biopterin deficiency. Neurology 38, 707–711 (1988).

    Article  CAS  Google Scholar 

  26. Furukawa, Y., Nishi, K., Kondo, T., Mizuno, Y. & Narabayashi, H. CSF biopterin levels and clinical features of patients with juvenile parkinsonism. Advances in Neurology vol 60 (eds Narabayashi, H., Nagatsu, T., Yanagisawa, N. & Mizuno, Y.) 562–567 (Raven Press, New York, 1993).

    Google Scholar 

  27. Blau, N., Joller, P., Atarés, M., Cardesa-Garcia, J. & Niederwieser, A. Increase of GTP cyclohydrolase I activity in mononuclear blood cells by stimulation: detection of heterozygotes of GTP cyclohydrolase I deficiency. Clin. Chim. Acta 148, 47–52 (1985).

    Article  CAS  Google Scholar 

  28. Hatakeyama, K., Harada, T., Suzuki, S., Watanabe, Y. & Kagamiyama, H. Purification and characterization of rat liver GTP cyclohydrolase I—Cooperative binding of GTP to the enzyme. J. biol. Chem. 264, 21660–21664 (1989).

    CAS  PubMed  Google Scholar 

  29. Nygaard, T.G., Marsden, C.D. & Fahn, S. Dopa-responsive dystonia: long-term treatment response and prognosis. Neurology 41, 174–181 (1991).

    Article  CAS  Google Scholar 

  30. Takahashi, H. et al. Biochemical and fluorodopa positron emission tomographic findings in an asymptomatic carrier of the gene for dopa-responsive dystonia. Ann. Neurol. 35, 354–356 (1994).

    Article  CAS  Google Scholar 

  31. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K. & Seitelberger, F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J. neurol. Sci. 20, 415–455 (1973).

    Article  CAS  Google Scholar 

  32. Niederwieser, A. et al. GTP cyclohydrolase I deficiency, a new enzyme defect causing hyperphenylalaninemia with neopterin, biopterin, dopamine, and serotonin deficiencies and muscular hypotonia. Eur. J. Pediatr. 141, 208–214 (1984).

    Article  CAS  Google Scholar 

  33. Dhondt, J.-L. et al. Neonatal hyperphenylalaninemia presumably caused by guanosine triphosphate-cyclohydrolase deficiency. J. Pediatr. 106, 954–956 (1985).

    Article  CAS  Google Scholar 

  34. Naylor, E.W. et al. Guanosine triphosphate cyclohydrolase I deficiency: early diagnosis by routine urine pteridine screening. Pediatrics 79, 374–378 (1987).

    CAS  PubMed  Google Scholar 

  35. Reisert, I., Engele, J. & Pilgrim, Ch. Early sexual differentiation of diencephalic dopaminergic neurons of the rat in vitro. Cell tissue Res. 255, 411–417 (1989).

    Article  CAS  Google Scholar 

  36. Kapatos, G. Tetrahydrobiopterin synthesis rate and turnover time in neuronal cultures from embryonic rat mesencephalon and hypothalamus. J. Neurochem. 55, 129–136 (1990).

    Article  CAS  Google Scholar 

  37. Fink, J.K. et al. Tetrahydrobiopterin administration in biopterin-deficient progressive dystonia with diurnal variation. Neurology 39, 1393–1395 (1989).

    Article  CAS  Google Scholar 

  38. Hoshiga, M., Hatakeyama, K., Watanabe, M., Shimada, M. & Kagamiyama, H. Autoradiographic distribution of [14C] tetrahydrobiopterin and its developmental change in mice. J. pharmacol. Exp. Ther. 267, 971–978 (1993).

    CAS  PubMed  Google Scholar 

  39. Harada, T., Kagamiyama, H. & Hatakeyama, K. Feedback regulation mechanisms for the control of GTP cyclohydrolase I activity. Science 260, 1507–1510 (1993).

    Article  CAS  Google Scholar 

  40. Takahashi, E., Hori, T., O'Connell, P., Leppert, M. & White, R. R-banding and nonisotopic in situ hybridization: precise localization of the human type II collagen gene (COL2A1). Hum. Genet. 86, 14–16 (1990).

    Article  CAS  Google Scholar 

  41. Takahashi, E. et al. Chromosome mapping of the human cytidine-5′-triphosphate (CTPS) gene to band 1p34.1-p34.3 by fluorescence in situ hybridization. Hum. Genet. 88, 119–121 (1991).

    Article  CAS  Google Scholar 

  42. Viegas-Péquignot, E., Lin, L.Z., Dutrillaux, B., Apiou, F. & Panliu, D. Assignment of human desmin gene to band 2p35 by nonradioactive in situ hybridization. Hum. Genet. 83, 33–36 (1989).

    Article  Google Scholar 

  43. Takahashi, E., Hori, T., O'Connell, P., Leppert, M. & White, R. Mapping of the MYC gene to band 8q24.12-q24.13 by R-banding and distal to fra (8) (q24.11), FRA8E, by fluorescence in situ hybridization. Cytogenet. cell Genet. 57, 109–111 (1991).

    Article  CAS  Google Scholar 

  44. Sawada, M. et al. A sensitive assay of GTP cyclohydrolase I activity in rat and human tissues using radioimmunoassay of neopterin. Anal. Biochem. 154, 361–366 (1986).

    Article  CAS  Google Scholar 

  45. Higuchi, R., Krummel, B. & Saiki, R.K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucl. Acids Res. 16, 7351–7367 (1988).

    Article  CAS  Google Scholar 

  46. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  47. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  48. Hatakeyama, K., Inoue, Y., Harada, T. & Kagamiyama, H. Cloning and sequencing of cDNA encoding rat GTP cyclohydrolase I—The first enzyme of the tetrahydrobiopterin biosynthetic pathway. J. biol. Chem. 266, 765–769 (1991).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichinose, H., Ohye, T., Takahashi, Ei. et al. Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet 8, 236–242 (1994). https://doi.org/10.1038/ng1194-236

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1194-236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing