Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila

Abstract

Huntington disease is caused by the expansion of a polyglutamine repeat in the Huntingtin protein (Htt) that leads to degeneration of neurons in the central nervous system and the appearance of visible aggregates within neurons. We have developed and tested suppressor polypeptides that bind mutant Htt and interfere with the process of aggregation in cell culture. In a Drosophila model, the most potent suppressor inhibits both adult lethality and photoreceptor neuron degeneration. The appearance of aggregates in photoreceptor neurons correlates strongly with the occurrence of pathology, and expression of suppressor polypeptides delays and limits the appearance of aggregates and protects photoreceptor neurons. These results suggest that targeting the protein interactions leading to aggregate formation may be beneficial for the design and development of therapeutic agents for Huntington disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Suppressor design and inhibition of aggregation in cell culture.
Figure 2: A bivalent suppressor is required for inhibition of aggregation.
Figure 3: Suppressors decrease aggregation and co-localize with expanded polyQ proteins.
Figure 4: Expression of suppressor rescues lethality in Drosophila.
Figure 5: Expression of suppressor rescues neurodegeneration of photoreceptors.
Figure 6: Suppressor peptide suppresses and delays polyQ aggregate formation in the central nervous system.
Figure 7: Aggregation in the developing Drosophila eye imaginal disc is delayed and inhibited by suppressor peptide.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Zoghbi, H.Y. & Orr, H.T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247 (2000).

    Article  CAS  Google Scholar 

  2. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 72, 971–983 (1993).

  3. Gusella, J.F. & MacDonald, M.E. Huntington's disease. Semin. Cell Biol. 6, 21–28 (1995).

    Article  CAS  Google Scholar 

  4. Penney, J.B., Vonsattel, J.-P., MacDonald, M.E., Gusella, J.F. & Myers, R.H. CAG repeat number governs the development rate of pathology in Huntington's disease. Ann. Neurol. 41, 689–692 (1997).

    Article  Google Scholar 

  5. Wanker, E.E. Protein aggregation and pathogenesis of Huntington's disease: mechanisms and correlations. Biol. Chem. 381, 937–942 (2000).

    Article  CAS  Google Scholar 

  6. Davies, S.W. et al. Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548 (1997).

    Article  CAS  Google Scholar 

  7. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  Google Scholar 

  8. Li, H. et al. Ultrastructural localization and progressive formation of neuropil aggregates in Huntington's disease transgenic mice. Hum. Mol. Genet. 8, 1227–1236 (1999).

    Article  CAS  Google Scholar 

  9. Paulson, H.L. Protein fate in neurodegenerative proteinopathies: polyglutamine diseases join the (mis)fold. Am. J. Hum. Genet. 64, 339–345 (1999).

    Article  CAS  Google Scholar 

  10. Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D. & Housman, D. Evidence for a recruitment and sequestration mechanism in Huntington's disease. Proc. Natl Acad. Sci. USA 96, 11404–11409 (1999).

    Article  CAS  Google Scholar 

  11. Chai, Y., Koppenhafer, S.L., Shoesmith, S.J., Perez, M.K. & Paulson, H.L. Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA2/MJD and suppression of polyglutamine aggregation in vitro. Hum. Mol. Genet. 8, 673–682 (1999).

    Article  CAS  Google Scholar 

  12. Boutell, J.M. et al. Aberrant interactions of transcriptional repressor proteins with the Huntington's disease gene product, huntingtin. Hum. Mol. Genet. 9, 1647–1655 (1999).

    Article  Google Scholar 

  13. Chai, Y., Koppenhafer, S.L., Bonini, N.M. & Paulson, H.L. Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J. Neurosci. 19, 10338–10347 (1999).

    Article  CAS  Google Scholar 

  14. Huang, C. et al. Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins. Somat. Cell Mol. Genet. 24, 217–233 (1998).

    Article  CAS  Google Scholar 

  15. Steffan, J.S. et al. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl Acad. Sci. USA 97, 6763–6768 (2000).

    Article  CAS  Google Scholar 

  16. Suhr, S.T. et al. Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J. Cell. Biol. 153, 283–289 (2001).

    Article  CAS  Google Scholar 

  17. Nucifora, F.C. et al. Interference by Huntingtin and Atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 291, 2423–2428 (2001).

    Article  CAS  Google Scholar 

  18. Waelter, S. et al. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol. Biol. Cell 12, 1393–1407 (2001).

    Article  CAS  Google Scholar 

  19. Perez, M.K. et al. Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J. Cell Biol. 143, 1457–1470 (1998).

    Article  CAS  Google Scholar 

  20. McCampbell, A. et al. CREB-binding protein sequestration by expanded polyglutamine. Hum. Mol. Genet. 9, 2197–2202 (2000).

    Article  CAS  Google Scholar 

  21. Perutz, M.F., Johnson, T., Suzuki, M. & Finch, J.T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl Acad. Sci. USA 91, 5355–5358 (1994).

    Article  CAS  Google Scholar 

  22. Nikolov, D.B. et al. Crystal structure of TFIID TATA-box binding protein. Nature 360, 40–46 (1992).

    Article  CAS  Google Scholar 

  23. Scherzinger, E. et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Proc. Natl Acad. Sci. USA 96, 4604–4609 (1999).

    Article  CAS  Google Scholar 

  24. Chen, S., Berthelier, V., Yang, W. & Wetzel, R. Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J. Mol. Biol. 311, 173–182 (2001).

    Article  CAS  Google Scholar 

  25. Muchowski, J. et al. Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl Acad. Sci. USA 97, 7841–7846 (2000).

    Article  CAS  Google Scholar 

  26. Marsh, J.L. et al. Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum. Mol. Genet. 9, 13–25 (2000).

    Article  CAS  Google Scholar 

  27. Kazemi-Esfarjani, P. & Benzer, S. Genetic suppression of polyglutamine toxicity in Drosophila. Science 5459, 1837–1840 (2000).

    Article  Google Scholar 

  28. Chan, H.Y.E., Warrick, J.M., Gray-Board, G.L., Paulson, H.L. & Bonini, N.M. Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum. Mol. Genet. 9, 2811–2820 (2000).

    Article  CAS  Google Scholar 

  29. Warrick, J.M. et al. Suppression of polyglutamine-mediated neurodegneration in Drosophila by the molecular chaperone HSP70. Nature Genet. 4, 425–428 (1999).

    Article  Google Scholar 

  30. Fernandez-Funez, P. et al. Identification of genes that modify neurodegeneration induced by the polyglutamine protein ataxin-1. Nature 408, 101–106 (2000).

    Article  CAS  Google Scholar 

  31. Truman, J.W., Taylor, B.J. & Awad, T.A. Formation of the adult nervous system. in The Development of Drosophila melanogaster (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1993).

    Google Scholar 

  32. Liu, L., Wolf, R., Ernst, R. & Heisenberg, M. Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400, 753–756 (1999).

    Article  CAS  Google Scholar 

  33. McBride, S.M. et al. Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster. Neuron 24, 967–977 (1999).

    Article  CAS  Google Scholar 

  34. Cagan, R.L. & Ready, D.F. The emergence of order in the Drosophila pupal retina. Dev. Biol. 136, 346–362 (1998).

    Article  Google Scholar 

  35. Tomlinson, A. & Rady, D.F. Neuronal differentiation in the Drosophila ommatidium. Dev. Biol. 120, 366–376 (1987).

    Article  CAS  Google Scholar 

  36. Soto, C. et al. B-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's therapy. Nature Med. 4, 822–826 (1998).

    Article  CAS  Google Scholar 

  37. Sigurdsson, E.M., Permanne, B., Soto, C., Wisneiwski, T. & Frangione, B. In vivo reversal of amyloid-B lesions in rat brain. J. Neuropathol. Exp. Neurol. 59, 11–17 (2000).

    Article  CAS  Google Scholar 

  38. Nagai, Y. et al. Inhibition of polyglutamine protein aggregation and cell death by novel peptides identified by phage display screening. J. Biol. Chem. 275, 10437–10442 (2000).

    Article  CAS  Google Scholar 

  39. Trojanowski, J.Q. & Lee, V.M. “Fatal attractions” of proteins. A comprehensive hypothetical mechanism underlying Alzheimer's disease and other neurodegenerative disorders. NY Acad. Sci. 924, 62–67 (2000).

    Article  CAS  Google Scholar 

  40. McGowan, D.P. et al. Amyloid-like inclusions in Huntington's disease. Neuroscience 100, 677–680 (2000).

    Article  CAS  Google Scholar 

  41. Bruijn, L.I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851–1854 (1998).

    Article  CAS  Google Scholar 

  42. Bates, G.P., Mangiarini, L. & Davies, S.W. Transgenic mice in the study of polyglutamine repeat expansion diseases. Brain Pathol. 8, 699–714 (1998).

    Article  CAS  Google Scholar 

  43. Li, H., Li, S.-H., Yu, Z.-X., Shelbourne, P. & Li, X.-J. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J. Neurosci. 21, 8473–8481 (2001).

    Article  CAS  Google Scholar 

  44. Yamamoto, A., Lucas, J.J. & Hen, R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 101, 57–66 (2000).

    Article  CAS  Google Scholar 

  45. Carmichael, J. et al. Bacterial and yeast chaperones reduce both aggregate formation and cell death in mammalian cell models of Huntington's disease. Proc. Natl Acad. Sci. USA 97, 9701–9705 (2000).

    Article  CAS  Google Scholar 

  46. Saudou, F., Finkbeiner, S., Devys, D. & Greenberg, M. Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66 (1998).

    Article  CAS  Google Scholar 

  47. Klement, I.A. et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53 (1998).

    Article  CAS  Google Scholar 

  48. Skinner, P.J., Vierra-Green, C.A., Amamian, E., Zoghbi, H.Y. & Orr, H.T. Amino acids in a region of ataxin-1 outside of the polyglutamine tract influence the course of disease in SCA1 transgenic mice. Neuro. Mol. Med. (in the press).

  49. Mollereau, B. et al. Two-step process for photoreceptor formation in Drosophila. Nature 412, 911–913 (2001).

    Article  CAS  Google Scholar 

  50. Steffan, J.S. et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739–743 (2001).

    Article  CAS  Google Scholar 

  51. Schwarze, S.R., Ho, A., Vocero-Akbani, A. & Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285, 1569–1572 (1999).

    Article  CAS  Google Scholar 

  52. Kafri, T. Lentivirus vectors: difficulties and hopes before clinical trials. Curr. Opin. Mol. Ther. 4, 316–326 (2001).

    Google Scholar 

  53. Aebischer, P. & Ridet, J. Recombinant proteins for neurodegenerative diseases: the delivery issue. Trends Neurosci. 24, 533–540 (2001).

    Article  CAS  Google Scholar 

  54. Chen, M. et al. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nature Med. 6, 797–801 (2000).

    Article  CAS  Google Scholar 

  55. Ferrante, R.J. et al. Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease. J. Neurosci. 20, 4389–4397 (2000).

    Article  CAS  Google Scholar 

  56. Bear, J.E. et al. Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 101, 717–728 (2000).

    Article  CAS  Google Scholar 

  57. Rubin, G.M. & Spradling, A.C. Genetic transformation of Drosophila with transposable elements vectors. Science 218, 348–353 (1982).

    Article  CAS  Google Scholar 

  58. Spradling, A.C. & Rubin, G.M. Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218, 341–347 (1982).

    Article  CAS  Google Scholar 

  59. Park, S. & Lim, J.K. A microinjection technique for ethanol-treated eggs and a mating scheme for detection of germ line transformants. Drosoph. Inf. Serv. 76, 197–199 (1995).

    Google Scholar 

  60. Luo, L., Liao, Y.J., Jan, L.Y. & Jan, Y.N. Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8, 1787–1802 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank J. Pallos, L. Bodai, E. Signer, N. Wexler and A. Tobin for many helpful discussions and E. Wanker for GST-Htt fusion proteins. The Elav hybridoma antibody developed by G.M. Rubin was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biological Sciences, Iowa City. This work was supported by a Cure Huntington's Disease Initiative grant from the Hereditary Disease Foundation (to L.M.T. and J.L.M.), the Lieberman Award from the Hereditary Disease Foundation (to L.M.T.), the Human Frontiers Science program (to L.M.T.), a Special Fellow Award from Leukemia and Lymphoma Society (to J.E.B.), a grant from the Sierra Foundation (to D.E.H.), and awards from the National Institutes of Health (to J.L.M., F.B.G. and D.E.H.). This work was made possible in part through access to the Optical Biology Shared Resource of the Cancer Center Support Grant at the University of California, Irvine and the National Drosophila Stock Center in Bloomington, Indiana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie M. Thompson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazantsev, A., Walker, H., Slepko, N. et al. A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nat Genet 30, 367–376 (2002). https://doi.org/10.1038/ng864

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng864

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing