Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4

An Erratum to this article was published on 01 August 2002

Abstract

Granulocyte colony-stimulating factor (G-CSF)–induced hematopoietic stem cell mobilization is widely used for clinical transplantation; however, the mechanism is poorly understood. We report here that G-CSF induced a reduction of the chemokine stromal cell–derived factor 1 (SDF-1) and an increase in its receptor CXCR4 in the bone marrow (BM), whereas their protein expression in the blood was less affected. The gradual decrease of BM SDF-1, due mostly to its degradation by neutrophil elastase, correlated with stem cell mobilization. Elastase inhibition reduced both activities. Human and murine stem cell mobilization was inhibited by neutralizing CXCR4 or SDF-1 antibodies, demonstrating SDF-1–CXCR4 signaling in cell egress. We suggest that manipulation of SDF-1–CXCR4 interactions may be a means with which to control the navigation of progenitors between the BM and blood to improve the outcome of clinical stem cell transplantation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: G-CSF decreases SDF-1 protein within the BM but not in the blood.
Figure 2: G-CSF transiently increases SDF-1 protein in the BM and increases SDF-1 mRNA expression by osteoblasts.
Figure 3: Degradation of SDF-1 by elastase and supernatants from G-CSF–treated human and murine BM.
Figure 4: Inhibition of elastase reduces SDF-1 degradation and mobilization.
Figure 5: G-CSF up-regulates CXCR4 expression on BM cells before their mobilization.
Figure 6: Anti-CXCR4 and anti–SDF-1 prevent G-CSF–induced mobilization of human and murine hematopoietic cells.

Similar content being viewed by others

References

  1. Morrison, S., Uchida, N. & Weissman, I.L. The biology of hematopoietic stem cells. Annu. Rev. Cell. Dev. Biol. 11, 35–71 (1995).

    Article  CAS  Google Scholar 

  2. To, L.B., Haylock, D.N., Simmons, P.J. & Juttner, C.A. The biology and clinical uses of blood stem cells. Blood 89, 2233–2258 (1997).

    CAS  PubMed  Google Scholar 

  3. Link, D.C. Mechanisms of granulocyte colony-stimulating factor-induced hematopoietic progenitor-cell mobilization. Semin. Hematol. 37, 25–32 (2000).

    Article  CAS  Google Scholar 

  4. Laterveer, L., Lindley, I.J., Hamilton, M.S., Willemze, R. & Fibbe, W.E. Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood 85, 2269–2275 (1995).

    CAS  PubMed  Google Scholar 

  5. Moore, M.A. et al. Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann. NY Acad. Sci. 938, 36–45 and 45–37 (2001).

    Article  CAS  Google Scholar 

  6. Sweeney, E.A. et al. Mobilization of stem/progenitor cells by sulfated polysaccharides does not require selectin presence. Proc. Natl. Acad. Sci. USA 97, 6544–6549 (2000).

    Article  CAS  Google Scholar 

  7. Frenette, P.S. & Weiss, L. Sulfated glycans induce rapid hematopoietic progenitor cell mobilization: evidence for selectin-dependent and independent mechanisms. Blood 96, 2460–2468 (2000).

    CAS  PubMed  Google Scholar 

  8. Roberts, A.W. & Metcalf, D. Noncycling state of peripheral blood progenitor cells mobilized by granulocyte colony-stimulating factor and other cytokines. Blood 86, 1600–1605 (1995).

    CAS  PubMed  Google Scholar 

  9. Uchida, N. et al. The unexpected G0/G1 cell cycle status of mobilized hematopoietic stem cells from peripheral blood. Blood 89, 465–472 (1997).

    CAS  PubMed  Google Scholar 

  10. Mohle, R., Haas, R. & Hunstein, W. Expression of adhesion molecules and c-Kit on CD34+ hematopoietic progenitor cells: comparison of cytokine mobilized blood stem cells with normal bone marrow and peripheral blood. J. Hematother. 3, 483–489 (1993).

    Article  Google Scholar 

  11. Pruijt, J.F.M. et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc. Natl. Acad. Sci. USA 96, 10863–10868 (1999).

    Article  CAS  Google Scholar 

  12. Papayannopoulou, T., Priestlry, G.V. & Nakamoto, B. Anti-VLA4/VCAM-1-induced mobilization required cooperative signaling through the kit/kit ligand pathway. Blood 91, 2231–2239 (1998).

    CAS  PubMed  Google Scholar 

  13. Aiuti, A., Webb, I.J., Bleul, C., Springer, T. & Gutierrez-Ramos, J.C. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to the peripheral blood. J. Exp. Med. 185, 111–120 (1997).

    Article  CAS  Google Scholar 

  14. Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845–848 (1999).

    Article  CAS  Google Scholar 

  15. Kollet, O. et al. Exclusive homing of human CD38−/lo CXCR4+ stem cells to the spleen and bone marrow of immune deficient mice within 1-6 hours. Blood 97, 3283–3291 (2001).

    Article  CAS  Google Scholar 

  16. Hattori, K. et al. Plasma elevation of stromal-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97, 3354–3360 (2001).

    Article  CAS  Google Scholar 

  17. Shen, H. et al. CXCR-4 desensitization is associated with tissue localization of hemopoietic progenitor cells. J. Immunol. 166, 5027–5033 (2001).

    Article  CAS  Google Scholar 

  18. Sweeney, E.A., Lortat-Jacob, H., Priestley, G.V., Nakamoto, B. & Papayannopoulou, T. Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. Blood 99, 44–51 (2002).

    Article  CAS  Google Scholar 

  19. Gazitt, Y. & Liu, Q. Plasma levels of SDF-1 and expression of SDF-1 receptor on CD34+ cells in mobilized peripheral blood of non-Hodgkin's lymphoma patients. Stem Cells 19, 37–45 (2001).

    Article  CAS  Google Scholar 

  20. Voermans, C. et al. In vitro migratory capacity of CD34+ cells is related to hematopoietic recovery after autologous stem cell transplantation. Blood 97, 799–804 (2001).

    Article  CAS  Google Scholar 

  21. Nagasawa, T. et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638 (1996).

    Article  CAS  Google Scholar 

  22. Zou, Y.R., Kottman, A.H., Kuroda, M., Taniuchi, I. & Littman, D.R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    Article  CAS  Google Scholar 

  23. Ma, Q. et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl. Acad. Sci. USA 95, 9448–9453 (1998).

    Article  CAS  Google Scholar 

  24. Ma, Q., Jones, D. & Springer, T.A. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10, 463–471 (1999).

    Article  CAS  Google Scholar 

  25. Kawabata, K. et al. A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc. Natl. Acad. Sci. USA 96, 5663–5667 (1999).

    Article  CAS  Google Scholar 

  26. Pelletier, A.J. et al. Presentation of chemokine SDF-1 α by fibronectin mediates directed migration of T cells. Blood 96, 2682–2690 (2000).

    CAS  PubMed  Google Scholar 

  27. Cinamon, G., Shinder, V. & Alon, R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nature Immunol. 2, 515–522 (2001).

    Article  CAS  Google Scholar 

  28. Poznansky, M.C. et al. Active movement of T cells away from a chemokine. Nature Med. 6, 543–548 (2000).

    Article  CAS  Google Scholar 

  29. Ponomaryov, T. et al. Increased expression of the chemokine SDF-1 following DNA damage: relevance for human stem cell function. J. Clin. Invest. 106, 1331–1339 (2000).

    Article  CAS  Google Scholar 

  30. Levesque, J.P., Takamatsu, Y., Nilsson, S.K., Haylock, D.N. & Simmons, P.J. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98, 1289–1297 (2001).

    Article  CAS  Google Scholar 

  31. Delgado, M. et al. Rapid inactivation of stromal cell-derived factor-1 by cathepsin G associated with lymphocytes. Eur. J. Immunol. 31, 699–707 (2001).

    Article  CAS  Google Scholar 

  32. McQuibban, G.A. et al. Matrix metalloproteinase activity inactivates the CXC chemokine Stromal Cell-Derived Factor 1. J. Biol. Chem. 276, 43503–43508 (2001).

    Article  CAS  Google Scholar 

  33. van der Loo, J.C.M. et al. Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization of human peripheral blood stem cells. Blood 92, 2556–2570 (1998).

    CAS  PubMed  Google Scholar 

  34. Tamamura, H. et al. Development of specific CXCR4 inhibitors possessing high selectivity indexes as well as complete stability in serum based on an anti-HIV peptide T140. Bioorg. Med. Chem. Lett. 11, 1897–1902 (2001).

    Article  CAS  Google Scholar 

  35. Benboubker, L. et al. Association between the SDF-1-3′A allele and high levels of CD34+ progenitor cells mobilized into peripheral blood in humans. Br. J. Haematol. 113, 247–250 (2001).

    Article  CAS  Google Scholar 

  36. Proost, P. et al. Processing by CD26/dipeptyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell-derived factor-1α. FEBS Lett. 432, 73–76 (1998).

    Article  CAS  Google Scholar 

  37. Valenzuela-Fernandez, A. et al. Leukocyte elastase negatively regulates Stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J. Biol. Chem. 277, 15677–15689 (2002).

    Article  CAS  Google Scholar 

  38. Levesque, J.-P., Bendall, L.J., Hendy, J., Williams, B. & Simmons, P.J. SDF-1α is inactivated by proteolytic cleavage in the bone marrow of mice mobilized by either G-CSF or cyclophosphamide. Blood 98, 831 (2001).

  39. Champagne, B., Tremblay, P., Cantin, A. & St Pierre, Y. Proteolytic cleavage of ICAM-1 by human neutrophil elastase. J. Immunol. 161, 6398–6405 (1998).

    CAS  PubMed  Google Scholar 

  40. Vaday, G.G. & Lider, O. Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation. J. Leukoc. Biol. 67, 149–159 (2000).

    Article  CAS  Google Scholar 

  41. Dale, D.C. et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 96, 2317–2322 (2000).

    CAS  PubMed  Google Scholar 

  42. Jinquan, T. et al. CXC chemokine receptor 4 expression and stromal cell-derived factor-1α-induced chemotaxis in CD4+ T lymphocytes are regulated by interleukin-4 and interleukin-10. Immunology 99, 402–410 (2000).

    Article  CAS  Google Scholar 

  43. Wang, J. et al. IL-4 and a glucocorticoid up-regulate CXCR4 expression on human CD4+ T lymphocytes and enhance HIV-1 replication. J. Leukoc. Biol. 64, 642–649 (1998).

    Article  CAS  Google Scholar 

  44. Gazitt, Y. Immunologic profiles of effector cells and peripheral blood stem cells mobilized with different hematopoietic growth factors. Stem Cells 18, 390–398 (2000).

    Article  CAS  Google Scholar 

  45. Hendrix, C.W. et al. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob. Agents Chemother. 44, 1667–1673 (2000).

    Article  CAS  Google Scholar 

  46. Liles, W.C. et al. Leukocytosis and mobilization of pluripotent hematopoietic progenitor cells in healthy volunteers induced by single dose administration of AMD-3100, a CXCR4 antagonist. Blood 98, 737 (2001).

    Google Scholar 

  47. Broxmeyer, H.E., Hangoc, G., Cooper, S. & Bridger, G. Interference of the SDF-1/CXCR4 axis in mice with AMD3100 induces rapid high level mobilization of hematopoietic progenitor cells, and AMD3100 acts synergistically with G-CSF and MIP-1α to mobilize progenitors. Blood 98, 810 (2001).

    Google Scholar 

  48. Lambeir, A.-M. et al. Kinetic investigation of chemokine truncation by CD26/dipeptyl peptidase IV reveals a striking selectivity within chemokine family. J. Biol. Chem. 276, 29839–29845 (2001).

    Article  CAS  Google Scholar 

  49. Dutt, P., Wang, J. & Groopman, J. Stromal cell-derived factor-1 α and stem cell factor/kit ligand share signaling pathways in hemopoietic progenitors: potential mechanism for cooperative induction of chemotaxis. J. Immunol. 161, 3652–3658 (1998).

    CAS  PubMed  Google Scholar 

  50. Kim, C.H. & Broxmeyer, H.E. In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood 91, 100–110 (1998).

    CAS  PubMed  Google Scholar 

  51. Heissig, B. et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–637 (2002).

    Article  CAS  Google Scholar 

  52. Janowska-Wieczorek, A., Marquez, L.A., Dobrowsky, A., Ratajczak, M.Z. & Cabuhat, M.L. Differential MMP and TIMP production by human marrow and peripheral blood CD34+ cells in response to chemokines. Exp. Hematol. 28, 1274–1285 (2000).

    Article  CAS  Google Scholar 

  53. Lin, T.J., Issekutz, T.B. & Marshall, J.S. Human mast cells transmigrate through human umbilical vein endothelial monolayers and selectively produce IL-8 in response to stromal cell-derived factor-1α. J. Immunol. 165, 211–220 (2000).

    Article  CAS  Google Scholar 

  54. Watanabe, T. et al. Endogeneous interleukin-8 (IL-8) surge in granulocyte colony-stimulating factor-induced peripheral blood stem cell mobilization. Blood 93, 1157–1163 (1999).

    CAS  PubMed  Google Scholar 

  55. Janowska-Wieczorek, A. et al. Growth factors and cytokines up-regulate gelatinase expression in bone marrow CD34+ cells and their transmigration through reconstituted basement membrane. Blood 93, 3379–3390 (1999).

    CAS  PubMed  Google Scholar 

  56. Peled, A. et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95, 3289–3296 (2000).

    CAS  PubMed  Google Scholar 

  57. Lataillade, J.J. et al. Chemokine SDF-1 enhances circulation CD34+ cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood 95, 756–768 (2000).

    CAS  PubMed  Google Scholar 

  58. Cashman, J., Clark-Lewis, I., Eaves, A. & Eaves, C. Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice. Blood 99, 792–799 (2002).

    Article  CAS  Google Scholar 

  59. Broxmeyer, H.E., Hangoc, G., Cooper, S. & Kim, C.H. Enhanced myelopoiesis in SDF-1-transgenic mice: SDF-1 modulates myelopoiesis by regulating progenitor cell survival and inhibitory effects of myelosuppressive chemokines. Blood 94, 650 (1999).

  60. Liu, F., Poursine-Laurent, J. & Link, D.C. The granulocyte colony-stimulating factor receptor is required for the mobilization of murine hematopoietic progenitors into peripheral blood by cyclophosphamide or interleukin-8 but not Flt-3 ligand. Blood 90, 2522–2528 (1997).

    CAS  PubMed  Google Scholar 

  61. Zipori, D., Toledo, J. & von der Mark, K. Phenotypic heterogeneity among stromal cell lines from mouse bone marrow disclosed in their extracellular matrix composition and interactions with normal and leukemic cells. Blood 66, 447–455 (1985).

    CAS  PubMed  Google Scholar 

  62. Coulomb-L'Hermin, A. et al. Stromal cell-derived factor 1 (SDF-1) and antenatal human B cell lymphopoiesis: expression of SDF-1 by mesothelial cells and biliary ductal plate epithelial cells. Proc. Natl. Acad. Sci. USA 96, 8585–8590 (1999).

    Article  CAS  Google Scholar 

  63. Shultz, L.D. et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol. 154, 180–191 (1995).

    CAS  PubMed  Google Scholar 

  64. Derdeyn, C.A. et al. Correlation between circulating stromal cell-derived factor 1 levels and CD4+ cell count in human immunodeficiency virus type 1-infected individuals. AIDS Res. Hum. Retroviruses 15, 1063–1071 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by grants from The Israel Science foundation and the Ares Serono Group (to T. L.), The Germany MINERVA grant and ICRF (to I. P.), the Gabriella Rich Center for Transplantation Biology (to T. P.) and the French National Agency for AIDS Research (to F. A.-S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsvee Lapidot.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, I., Szyper-Kravitz, M., Nagler, A. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3, 687–694 (2002). https://doi.org/10.1038/ni813

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni813

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing