Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bcl11a is essential for normal lymphoid development

Abstract

Bcl11a (also called Evi9) functions as a myeloid or B cell proto-oncogene in mice and humans, respectively. Here we show that Bcl11a is essential for postnatal development and normal lymphopoiesis. Bcl11a mutant embryos lack B cells and have alterations in several types of T cells. Phenotypic and expression studies show that Bcl11a functions upstream of the transcription factors Ebf1 and Pax5 in the B cell pathway. Transplantation studies show that these defects in Bcl11a mutant mice are intrinsic to fetal liver precursor cells. Mice transplanted with Bcl11a-deficient cells died from T cell leukemia derived from the host. Thus, Bcl11a may also function as a non-autonomous T cell tumor suppressor gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and characterization of Bcl11a mutant mice.
Figure 2: Lymphocyte development in Bcl11a mutant embryos.
Figure 3: Impaired B and T cell development in mice transplanted with Bcl11a mutant fetal liver cells.
Figure 4: T cell leukemia in mice transplanted with Bcl11a mutant fetal liver cells.
Figure 5: Histopathological analyses of leukemia in mice receiving transplants.
Figure 6: Enhanced Notch1 expression in the leukemia cells.

Similar content being viewed by others

References

  1. Orkin, S.H. Diversification of haematopoietic stem cells to specific lineages. Nat. Rev. Genet. 1, 57–64 (2000).

    Article  CAS  Google Scholar 

  2. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  Google Scholar 

  3. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  Google Scholar 

  4. Okuda, T., van Deursen, J., Hiebert, S.W., Grosveld, G. & Downing, J.R. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84, 321–330 (1996).

    Article  CAS  Google Scholar 

  5. Scott, E.W., Simon, M.C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    Article  CAS  Google Scholar 

  6. McKercher, S.R. et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J. 15, 5647–5658 (1996).

    Article  CAS  Google Scholar 

  7. Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994).

    Article  CAS  Google Scholar 

  8. Bain, G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892 (1994).

    Article  CAS  Google Scholar 

  9. Zhuang, Y., Soriano, P. & Weintraub, H. The helix-loop-helix gene E2A is required for B cell formation. Cell 79, 875–884 (1994).

    Article  CAS  Google Scholar 

  10. Lin, H. & Grosschedl, R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267 (1995).

    Article  CAS  Google Scholar 

  11. Urbanek, P., Wang, Z.Q., Fetka, I., Wagner, E.F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994).

    Article  CAS  Google Scholar 

  12. Nutt, S.L., Heavey, B., Rolink, A.G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).

    Article  CAS  Google Scholar 

  13. Rolink, A.G., Nutt, S.L., Melchers, F. & Busslinger, M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature 401, 603–606 (1999).

    Article  CAS  Google Scholar 

  14. Ting, C.N., Olson, M.C., Barton, K.P. & Leiden, J.M. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384, 474–478 (1996).

    Article  CAS  Google Scholar 

  15. Allen, R.D. 3rd, Bender, T.P. & Siu, G. c-Myb is essential for early T cell development. Genes Dev. 13, 1073–1078 (1999).

    Article  CAS  Google Scholar 

  16. Allman, D., Punt, J.A., Izon, D.J., Aster, J.C. & Pear, W.S. An invitation to T and more: notch signaling in lymphopoiesis. Cell 109, S1–S11 (2002).

    Article  CAS  Google Scholar 

  17. Li, J. et al. Leukaemia disease genes: large-scale cloning and pathway predictions. Nat. Genet. 23, 348–353 (1999).

    Article  CAS  Google Scholar 

  18. Suzuki, T. et al. New genes involved in cancer identified by retroviral tagging. Nat. Genet. 32, 166–174 (2002).

    Article  CAS  Google Scholar 

  19. Nakamura, T. et al. Evi9 encodes a novel zinc finger protein that physically interacts with BCL6, a known human B-cell proto-oncogene product. Mol. Cell. Biol. 20, 3178–3186 (2000).

    Article  CAS  Google Scholar 

  20. Satterwhite, E. et al. The BCL11 gene family: involvement of BCL11A in lymphoid malignancies. Blood 98, 3413–3420 (2001).

    Article  CAS  Google Scholar 

  21. Saiki, Y., Yamazaki, Y., Yoshida, M., Katoh, O. & Nakamura, T. Human EVI9, a homologue of the mouse myeloid leukemia gene, is expressed in the hematopoietic progenitors and down-regulated during myeloid differentiation of HL60 cells. Genomics 70, 387–391 (2000).

    Article  CAS  Google Scholar 

  22. Dent, A.L., Shaffer, A.L., Yu, X., Allman, D. & Staudt, L.M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).

    Article  CAS  Google Scholar 

  23. Avram, D. et al. Isolation of a novel family of C2H2 zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J. Biol. Chem. 275, 10315–10322 (2000).

    Article  CAS  Google Scholar 

  24. Hardy, R.R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).

    Article  CAS  Google Scholar 

  25. Li, Y.S., Wasserman, R., Hayakawa, K. & Hardy, R.R. Identification of the earliest B lineage stage in mouse bone marrow. Immunity 5, 527–535 (1996).

    Article  CAS  Google Scholar 

  26. Borowski, C. et al. On the brink of becoming a T cell. Curr. Opin. Immunol. 14, 200–206 (2002).

    Article  CAS  Google Scholar 

  27. Robey, E. & Fowlkes, B.J. Selective events in T cell development. Annu. Rev. Immunol. 12, 675–705 (1994).

    Article  CAS  Google Scholar 

  28. Shortman, K. & Wu, L. Early T lymphocyte progenitors. Annu. Rev. Immunol. 14, 29–47 (1996).

    Article  CAS  Google Scholar 

  29. Peault, B., Khazaal, I. & Weissman, I.L. In vitro development of B cells and macrophages from early mouse fetal thymocytes. Eur. J. Immunol. 24, 781–784 (1994).

    Article  CAS  Google Scholar 

  30. Kimoto, H. et al. The fetal thymus stores immature hematopoietic cells capable of differentiating into non-T lineage cells constituting the thymus stromal element. Int. Immunol. 5, 1535–1540 (1993).

    Article  CAS  Google Scholar 

  31. Ikuta, K. et al. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62, 863–8674 (1990).

    Article  CAS  Google Scholar 

  32. Kronenberg, M. et al. Rearrangement and transcription of the β-chain genes of the T-cell antigen receptor in different types of murine lymphocytes. Nature 313, 647–653 (1985).

    Article  CAS  Google Scholar 

  33. Artavanis-Tsakonas, S., Rand, M.D. & Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  Google Scholar 

  34. Felli, M.P. et al. Expression pattern of Notch1, 2 and 3 and Jagged1 and 2 in lymphoid and stromal thymus components: distinct ligand-receptor interactions in intrathymic T cell development. Int. Immunol. 11, 1017–1025 (1999).

    Article  CAS  Google Scholar 

  35. Ellisen, L.W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  CAS  Google Scholar 

  36. Pear, W.S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183, 2283–2291 (1996).

    Article  CAS  Google Scholar 

  37. Pui, J.C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    Article  CAS  Google Scholar 

  38. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  Google Scholar 

  39. Wilson, A., MacDonald, H.R. & Radtke, F. Notch 1–deficient common lymphoid precursors adopt αβ cell fate in the thymus. J. Exp. Med. 194, 1003–1012 (2001).

    Article  CAS  Google Scholar 

  40. Koch, U. et al. Subversion of the T/B lineage decision in the thymus by lunatic fringe-mediated inhibition of Notch-1. Immunity 15, 225–236 (2001).

    Article  CAS  Google Scholar 

  41. Izon, D.J. et al. Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1. Immunity 16, 231–243 (2002).

    Article  CAS  Google Scholar 

  42. Jehn, B.M., Bielke, W., Pear, W.S. & Osborne, B.A. Cutting edge: protective effects of notch-1 on TCR-induced apoptosis. J. Immunol. 162, 635–638 (1999).

    CAS  PubMed  Google Scholar 

  43. Schebesta, M., Heavey, B. & Busslinger, M. Transcriptional control of B-cell development. Curr. Opin. Immunol. 14, 216–223 (2002).

    Article  CAS  Google Scholar 

  44. Kawamata, S., Du, C., Li, K. & Lavau, C. Notch1 perturbation of hemopoiesis involves non-cell-autonomous modifications. J. Immunol. 168, 1738–1745 (2002).

    Article  CAS  Google Scholar 

  45. Robey, E. et al. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87, 483–492 (1996).

    Article  CAS  Google Scholar 

  46. Deftos, M.L., Huang, E., Ojala, E.W., Forbush, K.A. & Bevan, M.J. Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity 13, 73–84 (2000).

    Article  CAS  Google Scholar 

  47. Washburn, T. et al. Notch activity influences the αβ versus γδ T cell lineage decision. Cell 88, 833–843 (1997).

    Article  CAS  Google Scholar 

  48. Matzuk, M.M., Finegold, M.J., Su, J.G., Hsueh, A.J. & Bradley, A. α-Inhibin is a tumour-suppressor gene with gonadal specificity in mice. Nature 360, 313–319 (1992).

    Article  CAS  Google Scholar 

  49. ten Boekel, E., Melchers, F. & Rolink, A. The status of Ig loci rearrangements in single cells from different stages of B cell development. Int. Immunol. 7, 1013–1019 (1995).

    Article  CAS  Google Scholar 

  50. Chang, Y., Paige, C.J. & Wu, G.E. Enumeration and characterization of DJH structures in mouse fetal liver. EMBO J. 11, 1891–1899 (1992).

    Article  CAS  Google Scholar 

  51. Rolink, A., Haasner, D., Nishikawa, S. & Melchers, F. Changes in frequencies of clonable pre B cells during life in different lymphoid organs of mice. Blood 81, 2290–2300 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Spence and T. Kuwata for reviewing the manuscript; D. Swing for help with mouse breeding; J. Wine for tail vein injection; K. Noer and R. Matthai for help with flow cytometry; and the Publication Department of NCI Frederick for graphic illustration. This work was supported by the NCI, Department of Health and Human Services (P.L., N.A.J., N.G.C.). This publication has been funded in whole or in part with federal funds from the NCI, NIH, under contract number NO1-CO-12400 (J.R.K., M.O.). The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal G Copeland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Keller, J., Ortiz, M. et al. Bcl11a is essential for normal lymphoid development. Nat Immunol 4, 525–532 (2003). https://doi.org/10.1038/ni925

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni925

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing