Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury

Abstract

Amyloid-β (Aβ) peptides, found in Alzheimer's disease brain, accumulate rapidly after traumatic brain injury (TBI) in both humans and animals. Here we show that blocking either β- or γ-secretase, enzymes required for production of Aβ from amyloid precursor protein (APP), can ameliorate motor and cognitive deficits and reduce cell loss after experimental TBI in mice. Thus, APP secretases are promising targets for treatment of TBI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bace1 ablation protects against TBI-induced cell loss and behavioral deficits in vivo.
Figure 2: Chronic γ-secretase inhibition protects against TBI-induced cell loss and behavioral deficits in vivo.

Similar content being viewed by others

References

  1. Maas, A.I., Stocchetti, N. & Bullock, R. Lancet Neurol. 7, 728–741 (2008).

    Article  Google Scholar 

  2. Lenzlinger, P.M., Morganti-Kossmann, M.C., Laurer, H.L. & McIntosh, T.K. Mol. Neurobiol. 24, 169–181 (2001).

    Article  CAS  Google Scholar 

  3. Zhang, X., Chen, Y., Jenkins, L.W., Kochanek, P.M. & Clark, R.S. Crit. Care 9, 66–75 (2005).

    Article  CAS  Google Scholar 

  4. Mayeux, R. et al. Ann. Neurol. 33, 494–501 (1993).

    Article  CAS  Google Scholar 

  5. van Duijn, C.M. et al. Am. J. Epidemiol. 135, 775–782 (1992).

    Article  CAS  Google Scholar 

  6. Roberts, G.W., Gentleman, S.M., Lynch, A. & Graham, D.I. Lancet 338, 1422–1423 (1991).

    Article  CAS  Google Scholar 

  7. Roberts, G.W. et al. J. Neurol. Neurosurg. Psychiatry 57, 419–425 (1994).

    Article  CAS  Google Scholar 

  8. Ikonomovic, M.D. et al. Exp. Neurol. 190, 192–203 (2004).

    Article  CAS  Google Scholar 

  9. Chen, X.H. et al. Am. J. Pathol. 165, 357–371 (2004).

    Article  CAS  Google Scholar 

  10. Iwata, A., Chen, X.H., McIntosh, T.K., Browne, K.D. & Smith, D.H. J. Neuropathol. Exp. Neurol. 61, 1056–1068 (2002).

    Article  CAS  Google Scholar 

  11. Blasko, I. et al. J. Neural Transm. 111, 523–536 (2004).

    Article  CAS  Google Scholar 

  12. Cribbs, D.H., Chen, L.S., Cotman, C.W. & LaFerla, F.M. Neuroreport 7, 1773–1776 (1996).

    Article  CAS  Google Scholar 

  13. Nadler, Y. et al. Glia 56, 552–567 (2008).

    Article  Google Scholar 

  14. Uryu, K. et al. Exp. Neurol. 208, 185–192 (2007).

    Article  CAS  Google Scholar 

  15. Matsuoka, Y. et al. Am. J. Pathol. 158, 1345–1354 (2001).

    Article  CAS  Google Scholar 

  16. Mattson, M.P. et al. J. Neurosci. 12, 376–389 (1992).

    Article  CAS  Google Scholar 

  17. Wyss-Coray, T. & Mucke, L. Neuron 35, 419–432 (2002).

    Article  CAS  Google Scholar 

  18. Yankner, B.A. et al. Science 245, 417–420 (1989).

    Article  CAS  Google Scholar 

  19. Esposito, L., Gan, L., Yu, G.Q., Essrich, C. & Mucke, L. J. Neurochem. 91, 1260–1274 (2004).

    Article  CAS  Google Scholar 

  20. Rockenstein, E. et al. J. Biol. Chem. 280, 32957–32967 (2005).

    Article  CAS  Google Scholar 

  21. Fox, G.B., Fan, L., Levasseur, R.A. & Faden, A.I. J. Neurotrauma 15, 599–614 (1998).

    Article  CAS  Google Scholar 

  22. Brody, D.L. et al. Science 321, 1221–1224 (2008).

    Article  CAS  Google Scholar 

  23. Thornton, E., Vink, R., Blumbergs, P.C. & Van Den, H.C. Brain Res. 1094, 38–46 (2006).

    Article  CAS  Google Scholar 

  24. Cai, H. et al. Nat. Neurosci. 4, 233–234 (2001).

    Article  CAS  Google Scholar 

  25. Duff, K. et al. Nature 383, 710–713 (1996).

    Article  CAS  Google Scholar 

  26. Dovey, H.F. et al. J. Neurochem. 76, 173–181 (2001).

    Article  CAS  Google Scholar 

  27. Abramowski, D. et al. J. Pharmacol. Exp. Ther. 327, 411–424 (2008).

    Article  CAS  Google Scholar 

  28. El Mouedden, M., Vandermeeren, M., Meert, T. & Mercken, M. Curr. Pharm. Des. 12, 671–676 (2006).

    Article  CAS  Google Scholar 

  29. Arumugam, T.V. et al. Nat. Med. 12, 621–623 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Pajoohesh-Ganji and P. Washington for technical assistance; S. Fricke and O. Rodriguez of the Small Animal Imaging Laboratory at Georgetown University; and P. Mathews (Nathan S. Kline Institute) for antibody C1/6.1. This work was funded by grant R03NS57635 (M.P.B.) and a pilot award from the National Capital Area Rehabilitation Research Network R24HD050845 (M.P.B.), both from the US National Institutes of Health, and by the Klingel Family Foundation (M.P.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P Burns.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1 and 2 and Supplementary Methods (PDF 672 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loane, D., Pocivavsek, A., Moussa, CH. et al. Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. Nat Med 15, 377–379 (2009). https://doi.org/10.1038/nm.1940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing