Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Abnormal development of NG2+PDGFR-α+ neural progenitor cells leads to neonatal hydrocephalus in a ciliopathy mouse model

Abstract

Hydrocephalus is a common neurological disorder that leads to expansion of the cerebral ventricles and is associated with a high rate of morbidity and mortality. Most neonatal cases are of unknown etiology and are likely to have complex inheritance involving multiple genes and environmental factors. Identifying molecular mechanisms for neonatal hydrocephalus and developing noninvasive treatment modalities are high priorities. Here we use a hydrocephalic mouse model of the human ciliopathy Bardet-Biedl Syndrome (BBS) and identify a role for neural progenitors in the pathogenesis of neonatal hydrocephalus. We found that hydrocephalus in this mouse model is caused by aberrant platelet-derived growth factor receptor α (PDGFR-α) signaling, resulting in increased apoptosis and impaired proliferation of chondroitin sulfate proteoglycan 4 (also known as neuron-glial antigen 2 or NG2)+PDGFR-α+ neural progenitors. Targeting this pathway with lithium treatment rescued NG2+PDGFR-α+ progenitor cell proliferation in BBS mutant mice, reducing their ventricular volume. Our findings demonstrate that neural progenitors are crucial in the pathogenesis of neonatal hydrocephalus, and we identify new therapeutic targets for this common neurological disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hydrocephalus in BBS mutant mice occurs before motile cilia develop.
Figure 2: Increased apoptosis and reduced proliferation in the brains of Bbs1M390R/M390R mice.
Figure 3: Impaired survival and proliferation of NG2+PDGFR-α+ neural progenitor cells in Bbs1M390R/M390R mice.
Figure 4: Conditional knockout of Bbs1 in NG2+PDGFR-α+ progenitors causes neonatal hydrocephalus.
Figure 5: PDGFR-α signaling is impaired in BBS.
Figure 6: Lithium therapy rescues cell proliferation and hydrocephalus in Bbs1M390R/M390R mice.

Similar content being viewed by others

References

  1. Bruni, J.E., Del Bigio, M.R. & Clattenburg, R.E. Ependyma: normal and pathological. A review of the literature. Brain Res. 356, 1–19 (1985).

    CAS  PubMed  Google Scholar 

  2. Del Bigio, M.R. Ependymal cells: biology and pathology. Acta Neuropathol. 119, 55–73 (2010).

    PubMed  Google Scholar 

  3. Williams, M.A. et al. Priorities for hydrocephalus research: report from a National Institutes of Health–sponsored workshop. J. Neurosurg. 107, 345–357 (2007).

    PubMed  Google Scholar 

  4. Vogel, P. et al. Congenital hydrocephalus in genetically engineered mice. Vet. Pathol. 49, 166–181 (2012).

    CAS  PubMed  Google Scholar 

  5. Simon, T.D. et al. Hospital care for children with hydrocephalus in the United States: utilization, charges, comorbidities, and deaths. J. Neurosurg. Pediatr. 1, 131–137 (2008).

    PubMed  Google Scholar 

  6. Shannon, C.N. et al. The economic impact of ventriculoperitoneal shunt failure. Journal J. Neurosurg. Pediatr. 8, 593–599 (2011).

    PubMed  Google Scholar 

  7. Van Camp, G. et al. A duplication in the L1CAM gene associated with X-linked hydrocephalus. Nat. Genet. 4, 421–425 (1993).

    CAS  PubMed  Google Scholar 

  8. Chi, J.H., Fullerton, H.J. & Gupta, N. Time trends and demographics of deaths from congenital hydrocephalus in children in the United States: National Center for Health Statistics data, 1979 to 1998. J. Neurosurg. 103, 113–118 (2005).

    PubMed  Google Scholar 

  9. Zhang, J., Williams, M.A. & Rigamonti, D. Genetics of human hydrocephalus. J. Neurol. 253, 1255–1266 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Banizs, B. et al. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132, 5329–5339 (2005).

    CAS  PubMed  Google Scholar 

  11. Patwardhan, R.V. & Nanda, A. Implanted ventricular shunts in the United States: the billion-dollar-a-year cost of hydrocephalus treatment. Neurosurgery 56, 139–144 (2005).

    PubMed  Google Scholar 

  12. Vogel, T.W., Carter, C.S., Abode-Iyamah, K., Zhang, Q. & Robinson, S. The role of primary cilia in the pathophysiology of neural tube defects. Neurosurg. Focus 33, E2 (2012).

    PubMed  Google Scholar 

  13. Spassky, N. et al. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J. Neurosci. 25, 10–18 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tissir, F. et al. Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat. Neurosci. 13, 700–707 (2010).

    CAS  PubMed  Google Scholar 

  15. Talos, F. et al. p73 is an essential regulator of neural stem cell maintenance in embryonal and adult CNS neurogenesis. Cell Death Differ. 17, 1816–1829 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang, A. et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404, 99–103 (2000).

    CAS  PubMed  Google Scholar 

  17. Drake, J.M. The surgical management of pediatric hydrocephalus. Neurosurgery 62 (suppl. 2), 633–640 (2008).

    PubMed  Google Scholar 

  18. Drake, J.M., Kestle, J.R. & Tuli, S. CSF shunts 50 years on—past, present and future. Childs Nerv. Syst. 16, 800–804 (2000).

    CAS  PubMed  Google Scholar 

  19. Davis, R.E. et al. A knockin mouse model of the Bardet-Biedl syndrome 1 M390R mutation has cilia defects, ventriculomegaly, retinopathy, and obesity. Proc. Natl. Acad. Sci. USA 104, 19422–19427 (2007).

    CAS  PubMed  Google Scholar 

  20. Ibañez-Tallon, I. et al. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum. Mol. Genet. 13, 2133–2141 (2004).

    PubMed  Google Scholar 

  21. Lancaster, M.A., Schroth, J. & Gleeson, J.G. Subcellular spatial regulation of canonical Wnt signalling at the primary cilium. Nat. Cell Biol. 13, 700–707 (2011).

    PubMed  PubMed Central  Google Scholar 

  22. Ocbina, P.J., Eggenschwiler, J.T., Moskowitz, I. & Anderson, K.V. Complex interactions between genes controlling trafficking in primary cilia. Nat. Genet. 43, 547–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, Q., Seo, S., Bugge, K., Stone, E.M. & Sheffield, V.C. BBS proteins interact genetically with the IFT pathway to influence SHH-related phenotypes. Hum. Mol. Genet. 21, 1945–1953 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schneider, L. et al. PDGFRαα signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 15, 1861–1866 (2005).

    CAS  PubMed  Google Scholar 

  25. Kriegstein, A. & Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 32, 149–184 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Han, Y.G. et al. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat. Neurosci. 11, 277–284 (2008).

    CAS  PubMed  Google Scholar 

  27. Breunig, J.J. et al. Primary cilia regulate hippocampal neurogenesis by mediating sonic hedgehog signaling. Proc. Natl. Acad. Sci. USA 105, 13127–13132 (2008).

    CAS  PubMed  Google Scholar 

  28. Sawamoto, K. et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311, 629–632 (2006).

    CAS  PubMed  Google Scholar 

  29. Ihrie, R.A. & Alvarez-Buylla, A. Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron 70, 674–686 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nachury, M.V. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129, 1201–1213 (2007).

    CAS  PubMed  Google Scholar 

  31. Baker, K. et al. Neocortical and hippocampal volume loss in a human ciliopathy: a quantitative MRI study in Bardet-Biedl syndrome. Am. J. Med. Genet. A. 155A, 1–8 (2011).

    PubMed  Google Scholar 

  32. Keppler-Noreuil, K.M. et al. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS). BMC Med. Genet. 12, 101 (2011).

    PubMed  PubMed Central  Google Scholar 

  33. von Bohlen Und Halbach, O. Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res. 329, 409–420 (2007).

    CAS  PubMed  Google Scholar 

  34. Raponi, E. et al. S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia 55, 165–177 (2007).

    PubMed  PubMed Central  Google Scholar 

  35. Jackson, E.L. et al. PDGFR-α+ B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51, 187–199 (2006).

    CAS  PubMed  Google Scholar 

  36. Rivers, L.E. et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat. Neurosci. 11, 1392–1401 (2008).

    CAS  PubMed  Google Scholar 

  37. Richardson, W.D., Young, K.M., Tripathi, R.B. & McKenzie, I. NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron 70, 661–673 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tripathi, R.B., Rivers, L.E., Young, K.M., Jamen, F. & Richardson, W.D. NG2 glia generate new oligodendrocytes but few astrocytes in a murine experimental autoimmune encephalomyelitis model of demyelinating disease. J. Neurosci. 30, 16383–16390 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nishiyama, A., Komitova, M., Suzuki, R. & Zhu, X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat. Rev. Neurosci. 10, 9–22 (2009).

    CAS  PubMed  Google Scholar 

  40. Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 289, 1754–1757 (2000).

    CAS  PubMed  Google Scholar 

  41. Datta, S.R. et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231–241 (1997).

    CAS  PubMed  Google Scholar 

  42. Vivanco, I. & Sawyers, C.L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489–501 (2002).

    CAS  PubMed  Google Scholar 

  43. Scheid, M.P. & Woodgett, J.R. PKB/AKT: functional insights from genetic models. Nat. Rev. Mol. Cell Biol. 2, 760–768 (2001).

    CAS  PubMed  Google Scholar 

  44. Chalecka-Franaszek, E. & Chuang, D.M. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc. Natl. Acad. Sci. USA 96, 8745–8750 (1999).

    CAS  PubMed  Google Scholar 

  45. Su, H., Chu, T.H. & Wu, W. Lithium enhances proliferation and neuronal differentiation of neural progenitor cells in vitro and after transplantation into the adult rat spinal cord. Exp. Neurol. 206, 296–307 (2007).

    CAS  PubMed  Google Scholar 

  46. Li, H. et al. Lithium-mediated long-term neuroprotection in neonatal rat hypoxia-ischemia is associated with antiinflammatory effects and enhanced proliferation and survival of neural stem/progenitor cells. J. Cereb. Blood Flow Metab. 31, 2106–2115 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lechtreck, K.F., Delmotte, P., Robinson, M.L., Sanderson, M.J. & Witman, G.B. Mutations in Hydin impair ciliary motility in mice. J. Cell Biol. 180, 633–643 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Goto, J., Tezuka, T., Nakazawa, T., Sagara, H. & Yamamoto, T. Loss of Fyn tyrosine kinase on the C57BL/6 genetic background causes hydrocephalus with defects in oligodendrocyte development. Mol. Cell. Neurosci. 38, 203–212 (2008).

    CAS  PubMed  Google Scholar 

  49. Qin, S., Liu, M., Niu, W. & Zhang, C.L. Dysregulation of Kruppel-like factor 4 during brain development leads to hydrocephalus in mice. Proc. Natl. Acad. Sci. USA 108, 21117–21121 (2011).

    CAS  PubMed  Google Scholar 

  50. Yung, Y.C. et al. Lysophosphatidic acid signaling may initiate fetal hydrocephalus. Sci. Transl. Med. 3, 99ra87 (2011).

    PubMed  PubMed Central  Google Scholar 

  51. Rivière, J.B. et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat. Genet. 44, 934–940 (2012).

    PubMed  PubMed Central  Google Scholar 

  52. Azim, K. & Butt, A.M. GSK3β negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia 59, 540–553 (2011).

    PubMed  Google Scholar 

  53. Berbari, N.F., Lewis, J.S., Bishop, G.A., Askwith, C.C. & Mykytyn, K. Bardet-Biedl syndrome proteins are required for the localization of G protein–coupled receptors to primary cilia. Proc. Natl. Acad. Sci. USA 105, 4242–4246 (2008).

    CAS  PubMed  Google Scholar 

  54. Seo, S. et al. Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum. Mol. Genet. 18, 1323–1331 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Biesecker for help obtaining the human MRI scans. We thank K. Rahmouni and D.-F. Guo for help with quantitative RT-PCR and infusion experiments. We thank K. Agassandian for help with dye injection and CSF collection. We thank V. Buffard and L. Qian for their excellent technical assistance. We also appreciate valuable assistance from the University of Iowa Central Microscopy Research Facility. This work was supported in part by US National Institutes of Health grants R01EY110298 and R01EY017168 (to V.C.S.), R01EY022616 (to S.S.), the Knight Templar Eye Foundation (to S.S.) and the Neurosurgery Research and Education Foundation (to T.W.V.). C.S.C. is a National Science Foundation graduate research fellow, and V.C.S. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

C.S.C., T.W.V. and Q.Z. conceived of the project, designed and performed experiments, coordinated collaborations and wrote the manuscript. S.S. contributed to the experimental design and manuscript revisions. R.E.S. and M.D.C. performed transmission electron microscopy, CSF collection and dye injection experiments and revised the manuscript. T.O.M. coordinated microscopic experiments. K.M.K.-N. and P.N. provided and analyzed human MRI scans. D.R.T. performed MRI for all mice. D.Y.N. and C.C.S. designed and developed the Bbs1 mouse model used in this experiment. K.B. coordinated mouse genotyping and mating. V.C.S. initiated the project, contributed ideas, analyzed and interpreted the results and helped write the manuscript.

Corresponding author

Correspondence to Val C Sheffield.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 29853 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, C., Vogel, T., Zhang, Q. et al. Abnormal development of NG2+PDGFR-α+ neural progenitor cells leads to neonatal hydrocephalus in a ciliopathy mouse model. Nat Med 18, 1797–1804 (2012). https://doi.org/10.1038/nm.2996

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2996

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research