Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Angiogenesis in ischemic heart disease

Abstract

Inducing the formation of new blood vessels — a novel approach to treating myocardial ischemia

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fidler, I.J. & Ellis, L.M. The implication of angiogenesis for the biology and therapy of cancer metastasis. Cell 79, 185–88 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Risau, W. & Flamme, I., Ann. Rev. Cell. Dev. Biol. 11, 79–91 (1995).

    Article  Google Scholar 

  4. Dvorak, H.F., Brown, L.F., Detmar, M. & Dvorak, A.M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability and angiogenesis. Am. J. Pathol. 146, 1029–1039 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Thomas, K.A. Vascular endothelial growth factor, a potent and selective angiogenic agent. J. Biol. Chem. 271, 603–606 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Olofsson, B. et al. Vascular endothelial growth factor B, a novel growth factor for endothelial Cells. Proc. Natl. Acad. Sci. U.S.A. 93, 2576–2581 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Joukov, V. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 15, 290–298 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Slavin, J. Fibroblast growth factors: at the heart of angiogenesis. Cell. Biol. Int. 19, 431–444 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Folkman, J. & Shing, Y., Angiogenesis. J. Biol. Chem. 267, 10931–10934 (1992).

    CAS  PubMed  Google Scholar 

  12. Kuwabara, K. et al. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial Cells. Proc. Natl. Acad. Sci. U.S.A. 92, 4606–4610 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shweiki, D., Itin, A., Softer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Tuder, R.M., Flook, B.E. & Voelkel, N.F. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J. Clin. Invest. 95, 1798–1807 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, J. et al. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am. J. Physiol. 270, H1803–H1811 (1996).

    CAS  PubMed  Google Scholar 

  16. Sellke, F.W. et al. Enhanced microvascular relaxations to VEGF and bFGF in chronically ischemic porcine myocardium. Am. J. Physiol. 271, H713–H720 (1996).

    CAS  PubMed  Google Scholar 

  17. Nomura, M. et al. Possible participation of autocrine and paracrine vascular endothelial growth factors in hypoxia-induced proliferation of endothelial Cells and pericytes. J. Biol. Chem. 270, 28316–28324 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Sasayama, S. & Fujita, M. Recent insights into coronary collateral circulation. Circulation 85, 1197–1204 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Simons, M. & Ware, J.A. Food for starving hearts. Nature Med. 2, 519–520 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Polverini, P.J. Cellular adhesion molecules. Am. J. Pathol. 148, 1023–1029 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schaper, W. & Ito, W. Molecular mechanisms of collateral vessel growth. Circ. Res. 79, 911–919 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Hashimoto, E. et al. Rapid induction of vascular endothelial growth factor expression by transient ischemia in rat heart. Am. J. Physiol. 267, H1948–1954 (1994).

    CAS  PubMed  Google Scholar 

  23. Li, J., Hampton, T., Morgam, J. & Simons, M., TGF-beta release increases VEGF expression in the heart. Circulation 94, 1–285 (1996).

    Article  Google Scholar 

  24. Sharma, H.S. et al. Expression of angiogenic growth factors in the collateralized swine myocardium. Exs 61, 255–260 (1992).

    CAS  PubMed  Google Scholar 

  25. More, J.W.I. & Sholley, M.M. Comparison of the neovascular effects of stimulated macrophages and neutrophils in autologous rabbit corneas. Am. J. Pathol. 120, 87–98 (1985).

    Google Scholar 

  26. Sunderkotter, C., Goebeler, M., Schulze-Osthoff, K., Bhardwaj, R., & Sorg, C., Macrophage-derived angiogenesis factors. Pharmacol. Ther. 51, 195–216 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Kuzuya, M. et al. Induction of angiogenesis by smooth muscle Cell-derived factor: possible role in neovascularization in atherosclerotic plaque. J. Cell Physiol. 164, 658–667 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Muhlhauser, J. et al. VEGF165 expressed by a replication-deficient recombinant adenovirus vector induces angiogenesis in vivo . Circulation Res. 77 1077–1086 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Mesri, E.A., Federoff, H.J. & Brownlee, M. Expression of vascular endothelial growth factor from a defective herpes simplex virus type 1 amplicon vector induces angiogenesis in mice. Circulation Res. 76, 161–167 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Shen, H. et al. Characterization of vascular permeability factor/vascular endothelial growth factor receptors on mononuclear phagocytes. Blood 81, 2767–2773 (1993).

    CAS  PubMed  Google Scholar 

  31. Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336–3343 (1996).

    CAS  PubMed  Google Scholar 

  32. Edelman, E.R., Nugent, M.A., Smith, L.T. & Karnovsky, M.J. Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries. J. Clin. Invest. 89, 465–473 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cuevas, P., Gonzalez, A.M., Celler, F., & Baird, A., Vascular response to basic fibroblast growth factor when infused onto the normal adventitia or into the injured media of the rat carotid artery. Circulation Res. 69, 360–369 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Gordon, S., Fraser, I., Nath, D., Hughes, D. & Clarke, S. Macrophages in tissues and in vitro . Curr. Opin. Immunol. 4, 25–32 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Gordon, S., Clarke, S., Greaves, D. & Doyle, A. Molecular immunobiology of macrophages: recent progress. Curr. Opin. Immunol. 7, 24–33 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Arras, M., Ito, W., Winkler, B., Scholz, D. & Schaper, W. Enhancement of monocyte recruitment and activation by lipopolysaccharide leads to an increase of capillary sprouting in a rabbit model of hindlimb ischemia. (abstr.). Circulation 94, 1–608 (1996).

    Article  Google Scholar 

  37. Westernacher, D. & Schaper, W. A novel heart derived inhibitor of vascular Cell proliferation. Purification and biological activity. J. Mol. Cell. Cardiol. 27, 1535–1543 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. O'Reilly, M. et al. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Yanagisawa-Miwa, A. et al. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257, 1401–1403 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Battler, A. et al. Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. J. Am. Coll. Cardiol. 22, 2001–2006 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Padua, R.R., Sethi, R., Dhalla, N.S. & Kardami, E. Basic fibroblast growth factor is cardioprotective in ischemia-reperfusion injury. Mol. Cell. Biochem. 143, 129–135 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Sellke, F.W. et al. Basic FGF enhances endothelium-dependent relaxation of the collateral-perfused coronary microcirculation. Am. J. Physiol. 267, H1303 1311 (1994).

    CAS  PubMed  Google Scholar 

  43. Giordano, F.J. et al. Intracoronary transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nature Med. 2, 534–539 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Lazarous, D.F. et al. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 91, 145–153 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Unger, E.F. et al. Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am. J. Physiol. 266, H15881595 (1994).

    Article  CAS  Google Scholar 

  46. Harada, K. et al. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J. Clin. Invest. 94, 623–630 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Banai, S. et al. Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circulation Res. 69, 76–85 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Unger, E.F. et al. Extracardiac to coronary anastomoses support regional left ventricular function in dogs. Am. J. Physiol. 264, H1567–;1574 (1993).

    CAS  PubMed  Google Scholar 

  49. Unger, E.F. et al. A model to assess interventions to improve collateral blood flow: continuous administration of agents into the left coronary artery in dogs. Cardiovasc. Res. 27, 785–791 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Lopez, J. et al. Perivascular delivery of prolonged half-life aFGF via EVAc results in angiographic collateral development, improvement in coronary flow and function in chronic myocardial ischemia. (abstr.) J. Am. Coll. Cardiol. 27, 30A (1996).

    Article  Google Scholar 

  51. Banai, S. et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89, 2183–2189 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Pearlman, J.D. et al. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nature Med. 1, 1085–1089 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Harada, K. et al. Vascular endothelial growth factor in chronic myocardial ischemia. Am. J. Physiol. 270, H1791H1802 (1996).

  54. Baffour, R. et al. Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: Dose-response effect of basic fibroblast growth factor. J. Vasc. Surg. 16, 181–191 (1992).

    Article  CAS  PubMed  Google Scholar 

  55. Takeshita, S. et al. Therapeutic angiogenesis. A single intra-arterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J. Clin. Invest. 93, 662–670 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Isner, J.M. et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348, 370–374 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Schaper, W., De Brabander, M. & Lewi, P. DNA synthesis and mitoses in coronary collateral vessels of the dog. Circulation Res. 28, 671–679 (1971).

    Article  CAS  PubMed  Google Scholar 

  58. Takeshita, S. et al. Time course of increased Cellular proliferation in collateral arteries after administration of vascular endothelial growth factor in a rabbit model of lower limb vascular insufficiency. Am. J. Pathol. 147, 1649–1660 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Aiello, L.P. et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480–1487 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Mazue, G., Bertolero, F., Jacob, C., Sarmientos, P. & Roncucci, R. Preclinical and clinical studies with recombinant human basic fibroblast growth factor. Ann. N. Y. Acad. Sci. 638, 329–340 (1991).

    Article  CAS  PubMed  Google Scholar 

  61. Lazarous, D.F. et al. Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 94, 1074–1082 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Cuevas, P. et al. Hypotensive activity of fibroblast growth factor. Science 254, 1208–1210 (1991).

    Article  CAS  PubMed  Google Scholar 

  63. Hariawala, M.D. et al. VEGF improves myocardial blood flow but produces EDRF-mediated hypotension in porcine hearts. J. Surg. Res. 63, 77–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Yang, W., Ando, J., Korenaga, R., Toyo-oka, T. & Kamiya, A. Exogenous nitric oxide inhibits proliferation of cultured vascular endothelial Cells. Biochem. Biophys. Res. Commun. 203, 1160–1167 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ware, J., Simons, M. Angiogenesis in ischemic heart disease. Nat Med 3, 158–164 (1997). https://doi.org/10.1038/nm0297-158

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0297-158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing