Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tissue plasminogen activator (tPA) increase neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice

An Erratum to this article was published on 01 May 1998

Abstract

Intravenous tissue plasminogen activator (tPA) is used to treat acute stroke because of its thrombolytic activity and its ability to restore circulation to the brain1,2. However, this protease also promotes neurodegeneration after intracerebral injection of excitotoxins such as glutamate, and neuronal damage after a cerebral infarct is thought to be mediated by excitotoxins3–8. To investigate the effects of tPA on cerebral viability during ischemia/reperfusion, we occluded the middle cerebral artery in wild-type and tPA-deficient mice with an intravascular filament. This procedure allowed us to examine the role of tPA in ischemia, independent of its effect as a thrombolytic agent. tPA-deficient mice exhibited 50% smaller cerebral infarcts than wild-type mice. Intravenous injection of tPA into tPA−/− or wild-type mice produced larger infarcts, indicating that tPA can increase stroke-induced injury. Since tPA promotes desirable (thrombolytic) as well as undesirable (neurotoxic) outcomes during stroke, future therapies should be aimed at countering the excitotoxic damage of tPA to afford even better neuropro-tection after an acute cerebral infarct.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 333, 1581–1587 (1995).

  2. Hacke, E.C. et al. Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemisphere stroke. JAMA 274, 1017–1025 (1995).

    Article  CAS  Google Scholar 

  3. Choi, D.W. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634 (1988).

    Article  CAS  Google Scholar 

  4. Meldrum, B. & Garthwaite, J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends. Pharmacol. Sci. 11, 379–387 (1990).

    Article  CAS  Google Scholar 

  5. Lipton, S.A. & Rosenberg, P.A. Mechanisms of disease: Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330, 613–622 (1994).

    Article  CAS  Google Scholar 

  6. Tsirka, S.E., Gualandris, A., Amaral, D.G. & Strickland, S. Excitotoxin-induced neuronal degeneration and seizures are mediated by tissue plasminogen activator. Nature 377, 340–344 (1995).

    Article  CAS  Google Scholar 

  7. Tsirka, S.E., Rogove, A.D. & Strickland, S. Neuronal cell death and tPA. Nature 384, 123–124 (1996).

    Article  CAS  Google Scholar 

  8. Tsirka, S.E., Rogove, A.D., Bugge, T.H., Degen, J.L. & Strickland, S. An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J. Neurosci. 17, 543–552 (1997).

    Article  CAS  Google Scholar 

  9. Longa, E.Z., Weinstein, P.R., Carlson, S. & Cummins, R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84–91 (1989).

    Article  CAS  Google Scholar 

  10. Kinouchi, H. et al. Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc. Natl. Acad. Sci. USA. 88, 11158–11162 (1991).

    Article  CAS  Google Scholar 

  11. Memezawa, H., Smith, M.L. & Siesjö, B.K. Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 23, 552–559 (1992).

    Article  CAS  Google Scholar 

  12. Buchan, A.M., Xue, D. & Slivka, A. A new model of temporary focal neocortical ischemia in the rat. Stroke 23, 273–279 (1992).

    Article  CAS  Google Scholar 

  13. Huang, Z. et al. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265, 1883–1885 (1994).

    Article  CAS  Google Scholar 

  14. Yang, G.Y. & Betz, A.L. Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke 25, 1658–1664 (1994).

    Article  CAS  Google Scholar 

  15. Yang, G. et al. Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25, 165–170 (1994).

    Article  Google Scholar 

  16. Kamii, H. et al. Prolonged expression of hsp70 mRNA following transient focal cerebral ischemia in transgenic mice overexpressing CuZn-superoxide dismutase. J. Cereb. Blood Flow Metab. 14, 478–486 (1994).

    Article  CAS  Google Scholar 

  17. Garcia, J.H., Wagner, S., Liu, K.F. & Hu, X.J. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats: Statistical validation. Stroke 26, 627–634 (1995).

    Article  CAS  Google Scholar 

  18. Belayev, L, Busto, R., Zhao, W & Ginsberg, M.D. HU-211, a novel noncompetitive N-methyl-D-aspartate antagonist, improves neurological deficit and reduces infarct volume after reversible focal cerebral ischemia in the rat. Stroke 26, 2313–2320 (1995).

    Article  CAS  Google Scholar 

  19. Connolly, E.S. Jr, Winfree, C.J., Stern, D.M., Solomon, R.A. & Pinsky, D.J. Procedural and strain-related variables significantly affect outcome in a murine model of focal cerebral ischemia. Neurosurgery 18, 523–532 (1996).

    Google Scholar 

  20. Soriano, S.G. et al. Intercellular adhesion molecule-1 (ICAM-1 )-deficient mice are less susceptible to cerebral ischemia-reperfusion injury. Ann. Neurol. 39, 618–624 (1996).

    Article  CAS  Google Scholar 

  21. Bederson, J.B. et al. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 17, 472–476 (1986).

    Article  CAS  Google Scholar 

  22. Swanson, R.A. et al. A semiautomated method for measuring brain infarct volume. J. Cereb. Blood Flow Metab. 10, 290–293 (1990).

    Article  CAS  Google Scholar 

  23. Lin, T.-N., He, Y.Y., Wu, G., Khan, M. & Hsu, C.Y. Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke 24, 117–121 (1993).

    Article  CAS  Google Scholar 

  24. Zhang, R.L. et al. Anti-ICAM-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat. Neurology 44, 1747–1751 (1994).

    Article  CAS  Google Scholar 

  25. Chopp, M. et al. Postischemic administration of an anti-Mac-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in rats. Stroke 25, 869–876 (1994).

    Article  CAS  Google Scholar 

  26. Sappino, A.-P. et al. Extracellular proteolysis in the adult murine brain. J. Cm. Invest. 92, 679–685 (1993).

    Article  CAS  Google Scholar 

  27. Dirnagl, U., Kaplan, B., Jacewicz, M. & Pulsinelli, W. Continuous measurement of cerebral cortical blood flow by laser Doppler flowmetry in a rat stroke model. J. Cereb. Blood Flow Metab. 9, 589–596 (1989).

    Article  CAS  Google Scholar 

  28. Zhang, F., White, J.G. & ladecola, C. Nitric oxide donors increase blood flow and reduce brain damage in focal ischemia: Evidence that nitric oxide is beneficial in the early stages of cerebral ischemia. J. Cereb. Blood Flow Metab. 14, 217–226 (1994).

    Article  CAS  Google Scholar 

  29. Zhang, F. & g, F. & ladecola, C. Reduction of focal cerebral ischemic damage by delayed treatment with nitric oxide donors. J. Cereb. Blood Flow Metab. 14, 574–580 (1994).

    Article  CAS  Google Scholar 

  30. Rosenberg, G.A., Navratil, M., Barone, F. & Feurstein, G. Proteolytic cascade enzymes increased in focal cerebral ischemia in rat. J. Cereb. Blood Flow Metab. 16, 360–366 (1996).

    Article  CAS  Google Scholar 

  31. Tsirka, S.E., Bugge, T.H., Degen, J.L. & Strickland, S. Neuronal death in the CNS demonstrates a non-fibrin substrate for plasmin. Proc. Natl. Acad. Sci. USA 94, 9779–9781 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Tsirka, S., Strickland, S. et al. Tissue plasminogen activator (tPA) increase neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med 4, 228–231 (1998). https://doi.org/10.1038/nm0298-228

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0298-228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing