Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-enzymatically glycated tau in Alzheimer's disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid β-peptide

Abstract

Paired helical filament (PHF) tau is the principal component of neurofibriliary tangles, a characteristic feature of the neurodegenerative pathology in Alzheimer's disease (AD). Post-translational modification of tau, especially phosphorylation, has been considered a major factor in aggregation and diminished microtubule interactions of PHF-tau. Recently, it has been recognized that PHF-tau is also subject to non-enzymatic glycation, with formation of advanced glycation end products (AGEs). We now show that as a consequence of glycation, PHF-tau from AD and AGE-tau generate oxygen free radicals, thereby activating transcription via nuclear factor-κB, increasing amyloid β-protein precursor and release of 4 kD amyloid β-peptides. These data provide insight into how PHF-tau disturbs neuronal function, and add to a growing body of evidence that oxidant stress contributes to the pathogenesis of AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wischik, C. Cell biology of the Alzheimer tangle. Curr. Opin. Cell Biol. 1, 115–122 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Kosik, K. Alzheimer's disease sphinx: A riddle with plaques and tangles. J. Cell Biol. 127, 1501–1504 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Goedert, M. Tau protein and the neurofibrillary pathology of Alzheimer's disease. Trends Neurosci. 16, 460–465 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Trojanowski, J. & Lee, V. Paired helical filament tau in Alzheimer's disease, the kinase connection. Am. J. Pathol. 144, 449–453 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Haass, C. & Selkoe, D. Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell 75, 1039–1042 (1994).

    Article  Google Scholar 

  6. Ruderman, N., Williamson, J. & Brownlee, M. Glucose and diabetic vascular disease. FASEB J. 6, 2905–2914 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Baynes, J. Role of oxidative stress in development of complications in diabetes. Diabetes 40, 405–412 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Sell, D. & Monnier, V. Structure elucidation of senescence cross-link from human extracellular matrix: implication of pentoses in the aging process. J. biol. Chem. 264, 21597–21602 (1989).

    CAS  PubMed  Google Scholar 

  9. Yan, S.-D. et al. The presence of glycated tau in Alzheimer's disease: a mechanism for induction of oxidant stress. Proc. natn. Acad. Sci. U.S.A. 91, 7787–7791 (1994).

    Article  CAS  Google Scholar 

  10. Ledesma, M., Bonay, P., Colaco, C. & Avila, J. Analysis of microtubule-associated protein tau glycation in paired helical filaments. J. biol. Chem. 269, 21614–21619 (1994).

    CAS  PubMed  Google Scholar 

  11. Strauss, S. et al. Detection of interleukin-6 and α2-macroglobulin immunoreactivity in cortex and hippocampus of Alzheimer's disease patients. Lab. Invest. 66, 223–230 (1992).

    CAS  PubMed  Google Scholar 

  12. Finkelstein, E., Rosen, G.M. & Rauckman, E.J. Spin trapping of superoxide and hydroxyl radical. Molec. Pharmacol. 21, 262–265 (1982).

    CAS  Google Scholar 

  13. Zweier, J., Kuppusamy, P. & Lutty, G. Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in the postischemic heart. Proc. natn. Acad. Sci. U.S.A. 85, 4046–4050 (1988).

    Article  CAS  Google Scholar 

  14. Knops, J. et al. Overexpression of tau in a nonneuronal cell induces long cellular processes. J. Cell Biol. 114, 725–733 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Frappier, T., Georgieff, I., Brown, K. & Shelanski, M. Tau regulation of microtubule spacing and bundling. J. Neurochem. 63, 2288–2294 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Schreck, R., Rieber, P. & Baeuerle, P. Reactive oxygen intermediates as apparently widely used messengers in the action of the NF-κB transcription factor and HIV-1. EMBO J. 10, 2247–2258 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Griffin, W. et al. Brain interleukin 1 and S100 immunoreactivity are elevated in Down syndrome and Alzheimer disease. Proc. natn. Acad. Sci. U.S.A. 86, 7611–7615 (1989).

    Article  CAS  Google Scholar 

  18. Ray, A., Tatter, S., May, L. & Sehgal, P. Activation of the human IL-6 promoter by cytokines, viruses and second messenger agonists. Proc. natn. Acad. Sci. U.S.A. 85, 6701–6705 (1988).

    Article  CAS  Google Scholar 

  19. Shoji, M. et al. Production of Alzheimer amyloid β protein by normal proteolytic processing. Science 258, 126–129 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Loo, D. et al. Apoptosis is induced by β-amyloid in cultured central nervous system neurons. Proc. natn. Acad. Sci. U.S.A. 90, 7951–7955 (1993).

    Article  CAS  Google Scholar 

  21. Vitek, M. et al. Advanced glycation endproducts contribute to amyloidosis in Alzheimer's disease. Proc. natn. Acad. Sci. U.S.A. 91, 4766–4770 (1994).

    Article  CAS  Google Scholar 

  22. Smith, T. et al. Advanced maillard reaction endproducts are associated with Alzheimer disease pathology. Proc. natn. Acad. Sci. U.S.A. 91, 5710–5714 (1994).

    Article  CAS  Google Scholar 

  23. Behl, C., Davis, J., Lesley, R. & Schubert, D. Hydrogen peroxide mediates amyloid β-protein toxicity. Cell 77, 817–827 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Collins, T. Endothelial nuclear factor κB and the initiation of the atherosclerotic lesion. Lab. Invest. 68, 499–508 (1993).

    CAS  PubMed  Google Scholar 

  25. Liu, W.-K., Ksiezak-Reding, H. & Yen, S.-H. Abnormal tau proteins from Alzheimer's disease brains. J. biol. Chem. 266, 21723–21727 (1991).

    CAS  PubMed  Google Scholar 

  26. Lin, M.-F., DaVolio, J. & Garcia, R. Cationic liposome-mediated incorporation of prostatic acid phosphatase protein in human prostate carcinoma cells. Biochem. biophys. Res. Commun. 192, 413–419 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Yan, S.-D. et al. Enhanced cellular oxidant stress by the interaction of advanced glycation endproducts with their receptors/binding proteins. J. biol. Chem. 269, 9882–9888 (1994).

    PubMed  Google Scholar 

  28. Yavin, E. & Yavin, Z. Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polylysine-coated surfaces. J. Cell Biol. 62, 540–546 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sakurai, T. & Tsuchiya, S. Superoxide production from nonenzymatically glycated protein. FEBS Lett. 236, 406–410 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Dignam, J., Lebovitz, R. & Roeder, R. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sambrook, J., Fritsch, E. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  32. Caporaso, G., Gandy, S., Buxbaum, J. & Greengard, P. Chloroquine inhibits intracellular degradation but not secretion of Alzheimer β/A4 amyloid precursor protein. Proc. natn. Acad. Sci. U.S.A. 89, 2252–2256 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, S., Yan, S., Chen, X. et al. Non-enzymatically glycated tau in Alzheimer's disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid β-peptide. Nat Med 1, 693–699 (1995). https://doi.org/10.1038/nm0795-693

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0795-693

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing